الجمهــوريـة العــربيـة الســـوريـة
 مجمع اللغة العربية

هسره هعبم همشطات الرياضيات
إنكيزي - عربي

إعداد

لجنة همطالحات الرياضيات في المجمع
أ. د. خضر الأحمد
أ. د. هوفق دعبول
أ. د. بشير قابيل
Y. 11

$$
\begin{aligned}
& \text { A } \\
& \text { a posteriori probability = احتِمالٌ بَعْدِيّ } \\
& \text { a priori probability }=\text { احتِمالٌ قَبْلِّيّ } \\
& \text { abacus }=\text { مِعْداد } \\
& \text { Abel prize }=\text { جائِزةُ آبِل } \\
& \text { Abel theorem = مُبرْهَنُة آبِل } \\
& \text { Abel’s inequality = مُتباينةُ آبل } \\
& \text { Abel's integral equation = مُعادَلُّهُ آبل النَّكامُلِّلِّة } \\
& \text { مُبرْهَنُةُ آبِل في النّهاية } \\
& \text { Abel's test }=\text { اختبِبارُ آبِل } \\
& \text { Abelian additive group = زُمْةٌ جَمْمِيَّةٌ آبليَّة } \\
& \text { Abelian domain }=\text { نطاقي" آبِليّ } \\
& \text { Abelian field =حَقْلٌ آبلِيّ } \\
& \text { زُمْرُةٌ آبليَّة } \\
& \text { Abelian operation = عَمَلِيَّةُ آبِليَّة } \\
& \text { Abelian ring = حَلَقٌٌ آبِليَّة } \\
& \text { abscissa }=\text { إحداثِيٌّ سينيّ } \\
& \text { absolute deviation = انْحِر افُّ مُطْلْقَ } \\
& \text { absolute error = خَطَّأٌ مُطْلْقَ } \\
& \text { absolute geometry = هَنْدَسْةُ ُمُطْلُقة } \\
& \text { مُتَباينةٌ مُطْلْقة } \\
& \text { مقِقْدرٌ مُطْلْق }
\end{aligned}
$$

$$
\begin{aligned}
& \text { absolute number = عَدَدٌ مُطْلْقَ } \\
& \text { absolute term =حَدٌّ مُطْلَق } \\
& \text { absolute value = قيمةٌ مُطْلْقَة } \\
& \text { absolutely continuous function = دالْةٌ مُسْتَمرَّة بالإظْلاق } \\
& \text { absolutely convergent (adj) = مُتقارِبٌ بِالِّطْلاق } \\
& \text { absolutely summable (adj) =جَموعٌ بِالِإْلاق } \\
& \text { absorbing set = مَجْموعةٌ ماصَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { حاللٌّ ماصَّة } \\
& \text { absorption laws = قانونا الامْنِصاص } \\
& \text { abstract algebra = الجَبْرُ المُجَرَّد } \\
& \text { abstract machine = آلةٌ مُجَرَّدة } \\
& \text { abstraction }=\text { تَجْرِيد } \\
& \text { abundant number =عَدَدٌ وافِر (عَدَدٌ زائِد) } \\
& \text { acceleration }=\text { تَسارُع } \\
& \text { accumulation point of a set = نُقْطُ تَجَمُّعٌ (تَراكُمٍ) لِمَجْموعة } \\
& \text { accumulative error =خَأٌ تَراكُمِيّ } \\
& \text { accuracy }=\text { رقَّة } \\
& \text { Achilles' paradox = مُحِيِّةُ أخيل } \\
& \text { acnode = نُقْطٌٌ مُنْعْزَ } \\
& \operatorname{acos}(\operatorname{arc} \operatorname{cosine})=\text { قَوسُ جَيْب التُّمام }
\end{aligned}
$$

$$
\begin{aligned}
& \text { acosech (arc cosech) = قَوْسُ قاطِعِ التَّمامِ الزُّأَئِدِيّ } \\
& \text { قَوْسُ جَيْب التَّمام الزَّأِئِدِيّ } \\
& \text { acot (arc cotangent) = قَوْسُ ظِلِّ التَّمام } \\
& \text { acoth (arc-hyperbolic cotangent) = قَوُ ظِلِّ التَّمامِ الزَّأِئِدِيّ } \\
& \text { acsc (arc cosecant) = قَوْسُ قاطِع النَّمام } \\
& \text { acsch (arc cosech) = قَوْسُ قاطِع التَّمامِ الزَّأِئِديّ } \\
& \text { action }=\text { تَاْثِير (فِعْل) } \\
& \text { acute angle = } \\
& \text { acute triangle = مُثَلَّثْ حادُّ الزَّوايا حا }
\end{aligned}
$$

$$
\begin{aligned}
& \text { acyclic graph =بَيانٌ خالِ من الحَلَقات } \\
& \text { كَمِيَّةٌ مُضافة } \\
& \text { addition }=\text { جَمْع } \\
& \text { صيغةُ جَمْع } \\
& \text { addition sign }=\text { إشارةُ الجَمْع } \\
& \text { additive function }=\text { دالَةٌ جَمْعِيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { زُمْرةٌ جَمْمَيَّة } \\
& \text { عُنْصُرٌ مُحايِدٌ جَمْعْيّ } \\
& \text { additive inverse = مَقْلوبٌ جَمْمِيّ (نَظُيرّ جَمْعْيّ) } \\
& \text { additive set function = دالْةٌ مَجْموعَاتِيَّةٌ جَمْعِيّْة } \\
& \text { adherent point }=\text { نُقْطةٌ مُلاصِقةة } \\
& \text { مَصْنوفةُ تَجاورُ } \\
& \text { زاوريَتانِ مُتَجاورِرَتان } \\
& \text { adjacent edges = وُصْلَتانِ مُتَجاورَتانتان } \\
& \text { ضلْنِعٌ مُجاور } \\
& \text { رَأْسانِ مُتَجاوران } \\
& \text { adjoint matrix }=\text { قَرينةُ مَصْفوفة (مُر افِقةُ مَصْفوفةة) } \\
& \text { adjoint operator = مُؤتِّرٌ مُر افِق } \\
& \text { affine geometry = المَنْدَسُة التَّأُفِيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { غِلافِّ تَأَكِيّيّ } \\
& \text { affine manifold = مُتَنَوَعةٌ تَأَكْيَّةَ } \\
& \text { affine plane = مُستْنٍ تَآَكُفِيّ } \\
& \text { affine space = فَضاء تَآَكْفِيّ } \\
& \text { affine span = بَسْطٌُ تَاكُفِيَّةِ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { affine transformation = تَحْويلّ تَآَكْفي" }
\end{aligned}
$$

$$
\begin{aligned}
& \text { تَآَفُ } \\
& \text { وَسَطْ هَنْدَسِيٌّ حِسابيّ } \\
& \text { دالَّةُ آيري } \\
& \text { Akerman function = دالُّة أكرْمان } \\
& \text { رُصُّ ألكسانْدروف } \\
& \text { algebra }=\text { جَبْر } \\
& \text { algebra of propositions =جَبْرُ القَضايا }
\end{aligned}
$$

$$
\begin{aligned}
& \text { algebra of subsets = جَبْرُ مَجْموعاتٍ جُزْئَيَّة } \\
& \text { algebra over a field }=\text { جَبرٌ على حَقْل } \\
& \text { لُصاقةٌ جَبْرِيَّة } \\
& \text { algebraic element = عُنصرُ جَبْريّ } \\
& \text { مُعُعَدِّةٌ جَبْرَيَّة } \\
& \text { algebraic expression = عِبارةٌ جَبْرَّة } \\
& \text { algebraic extension field =حَقْلُ تَمْديدٍ جَبْرِيّ } \\
& \text { algebraic function = دالَّةٌ جَبْرِيَّة } \\
& \text { algebraic geometry }=\text { الْنُدَسُُ الجَبْريَّةُ } \\
& \text { algebraic independence = استِقْلالٌ جَبريّ المِيّ } \\
& \text { algebraic integer =عَدَدٌ صَحيحّ جَبْرِيّ } \\
& \text { algebraic number = عَدَدٌ جَجْرِيّ } \\
& \text { حَحْقُ أُعْدادٍ جَبْرَيَّة } \\
& \text { algebraic number theory = النَظَرِيَّةُ الجَبِرِيَّةُ للأُعْداد } \\
& \text { كائِنٌ جَبْرِيّ } \\
& \text { algebraic operation = عَمَلِيَّةٌ جَبْرِيَّة } \\
& \text { بنْيٌة جَبْرَيَّة } \\
& \text { رَمْزٌ جَبْرِيّ } \\
& \text { algebraic system = مَنْومةٌ جَبْرَيَّة } \\
& \text { algebraic term =حَدٌ جَبْرِيّ } \\
& \text { algebraic topology = الطبولوجيا الجُبْرِيَّة } \\
& \text { algebraic variety = مُنَوَعةٌ جَبْرِيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مَجَمْوعةٌ مُعْلَقةٌ جَبْرَيًّا } \\
& \text { algebraically complete field =حَقْلٌ تامٌّ جَبْرًِّا } \\
& \text { algebraically independent }=\text { مُسْتَقِلٍّ جَبْرِيًّا حِّا }
\end{aligned}
$$

$$
\begin{aligned}
& \text { algorithm =خُورارِمْمِّة } \\
& \text { alignment chart = مُخَطْطُ مُحاذاة } \\
& \text { aliquant part = قاسِمٌ غَيْرُ تامٌ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { aliquot part = قاسِمّ تامّ } \\
& \text { مُنْفَصِلةٌ تَقْرِيبًا } \\
& \text { aln (antinatural logarithm) =مُقابِلُ كُغارِتْ طَبِيعيّ } \\
& \text { alog (antilogarithm) }=\text { مُقابِلُ ُلغارِتم } \\
& \text { alternant }=\text { مُناوب } \\
& \text { alternate angles = اويَتانٍ مُتُبادلَّنان } \\
& \text { جَجْرٌ مُتناوبِ } \\
& \text { alternating form = صيغةٌ مُتَناوبة } \\
& \text { دالْلةٌ مُتنَاوبة } \\
& \text { زُمُرةٌ مُتناوبة } \\
& \text { alternating series = مُتَسَلْسِلةٌ مُتنَاوِبة } \\
& \text { alternating series test = اخخِبارُ المُتسَكَسلاتِ المُنتاوبة } \\
& \text { مُبرَهْنَةُ التَّناوُب } \\
& \text { alternative algebra }=\text { جَبْرٌ بَديل } \\
& \text { alternative hypothesis = فَرْضِيَّةٌ بَديلة بِيلة } \\
& \text { مُبرَهْنَةٌ بَديلة } \\
& \text { altitude = ارتِفاع } \\
& \text { مُمُلّْثُ الارْتِفاعات } \\
& \text { حالةٌ مُلْبِسة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { amicable numbers = عَدَدانِ مُتَحبَّابُّن } \\
& \text { amplitude }=\text { سِعة، سَمْت } \\
& \text { analysis }=\text { التَّحْليل } \\
& \text { analysis of variance = تَحْليلُ التُبَّيُن } \\
& \text { analyst = مُحَلِّل (مُختَصُّ بالَّتَحْليل) } \\
& \text { analytic (adj) = تَحْليليّيّ } \\
& \text { analytic continuation = تَمْديدٌ تَحْليليِيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { analytic geometry = الْنْدَسَةُ النَّحْلِيلِيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { analytic number theory = النَّرَيَّةُ التَّحْليِليَّةُ للأُعْداد } \\
& \text { مَحْمْوعةٌ تَحْلِيلِّة } \\
& \text { analytic structure = بنْيةُ تَحْليلِيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { analytical engine = آلةٌ تُحليليَّة } \\
& \text { anchor ring =حَلَقُة مِرْساة } \\
& \text { angle }=\text { زاوية } \\
& \text { تَنْصيفُ زاوية } \\
& \text { angle brackets = قَوْسانِ زاويَّان } \\
& \text { angle of declination }=\text { زاوِيةُ الانْحِدَارِّان } \\
& \text { زاوِيُة الانْخِفاض } \\
& \text { زاوريةُ الارْتِفاع } \\
& \text { angle of inclination }=\text { زاوِيةُ الميّْل } \\
& \text { angular (adj) = } \\
& \text { تَسارُعٌ زاوِيّ } \\
& \text { سُرْعةٌ زاويَّة } \\
& \text { نسْبُةٌ لاتَو افُقِيَّة } \\
& \text { annihilator }=\text { مُعْدِم } \\
& \text { annular solid = مُجَسَّمٌ حَلَقيّ } \\
& \text { annulus = حَقَةٌ دائِيَّة (طَوْقَ) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { antichain = سِلْسلةٌ مُعاكِسة } \\
& \text { anticlastic (adj) = ذو تَقَوُسَيْنِ مُتْعَاكِسَيْن } \\
& \text { anticommutative operation =عَمَلِّةٌّ لاتَبْديلِيَّةُ } \\
& \text { مُمُبِّلٌ تَخَالُفِيّ } \\
& \text { anticosecant = قَرْسُ قاطِعِ التَّمام } \\
& \text { anticosine = قَوْسُ جَيْبِ التَّمام } \\
& \text { anticotangent = قَوْسُ ظِلِّ التَّمام } \\
& \text { antiderivative = دالَّةٌ أُصْلِيَّة (عَكْسُ مُشْنْقَق) } \\
& \text { antidifferentiate (v) =يُكامِل }
\end{aligned}
$$

$$
\begin{aligned}
& \text { anti-hyperbolic function = دالْةٌ زائِدِيَّةٌ عَكْسِيَّة } \\
& \text { anti-isomorphism = تَماكُلِّ عَكْسِيّ } \\
& \text { مُقُقابُلُ لُغارِتم } \\
& \text { مُتَخالِفا تَوازٍ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { antisecant = قَوْسُ القاطِعِ } \\
& \text { antisine }=\text { قَرُسُ الجَيْبِ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { antisymmetric determinant = مُحَدِّدٌ مُتْنَاظِرَّ مُتَخالِفة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مُوُتِّرٌ مُتَناظِرٌ مُتَخالِف مُنِ } \\
& \text { antitangent = قَوْرُ الظِّلِّ } \\
& \text { Apery's theorem =مُبْهْنَةُ أبيري مُ } \\
& \text { قِقْنَّة (ذُرْوة) } \\
& \text { Apollonius' circle = دائرةُ أبولونيوس } \\
& \text { Apollonius' problem = مَسْألةُ أبولونيوس أبلوس } \\
& \text { apothem }=\text { عامِد } \\
& \text { سُطوحٌ طُبُوقة } \\
& \text { applied mathematics = الريّاضِيَّاتُ النَّطْبِيقَّةُ } \\
& \text { approximate }(v)=\text { يُقَرِب } \\
& \text { approximate reasoning }=\text { استِنْتاجٌ تَقْرِيبيّ } \\
& \text { approximation }=\text { تَقْريب } \\
& \text { Arabic numerals = الأرقامُ العَرَبيّة (المَفربيَّة) } \\
& \text { arbilos (arbelos) = سِكِّن الحَذَّاء (أربيلوس) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { arc }=\text { قَوْس } \\
& \text { arc cosecant = قَوْسُ قاطِعِ التَّمام } \\
& \text { قَوَسُ قاطِعِ التُّمامِ الزَّأِئِدِيّ } \\
& \text { قَرْسُ جَيْبِ التُّمامِ الزَّأِئِيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { قَوْسُ جَيْب التَّمام } \\
& \text { arc cotangent = قَوْ ظِلِّ التَّمام } \\
& \text { arc cotanh = قَوْسُ طِلّ التَّمامِ الزَّأَئِدِيّ } \\
& \text { arc secant = قَوُْ القاطِع } \\
& \text { قَوْسُ الجَيْبِ } \\
& \text { arc tangent = قَسُسُ الظِّل" }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مُمَجَسَّمٌ أرثَيدي" } \\
& \text { Archimedes' axiom = مَوْضوعةُ أرْخَميدِسِ أرِيدِ } \\
& \text { Archimedes' spiral = حَلزونُ أرْخَميدِسِ } \\
& \text { قَوْسُ جَيْب التَّمامِ الزَّأِئِيّيّ } \\
& \text { قَوْسُ ظِلِّ التَّمامِ الزَّأِئِدِيّ } \\
& \text { arc-hyperbolic function }=\text { دالَّةٌ زائِئِيَّةُ عَكْسِّةُ } \\
& \text { arc-hyperbolic secant = قَسْ القاطِعِ الزَّأَئِيّيّ } \\
& \text { قَوْسُ الجَيْبِ الزَّأِئِديّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مَجْمْوعةٌ مُتُر ابطةٌ قَوْسِسَّا } \\
& \text { area }=\text { مساحة } \\
& \text { area sampling = اعتِيانٌ بالمَساحة } \\
& \text { Argand diagram =مُخَطَّطُ أرْغانْد } \\
& \text { Arguesian plane =مُستْوٍ أركويزيّ } \\
& \text { argument }=\text { سعة } \\
& \text { وَرَقةُ رَسْمِ نصْفُ لُغارِتمِيَّة } \\
& \text { عِلْمُ الحِساب، حِسابيّ } \\
& \text { arithmetic average =مُتوَسِّطُ حِسابيَّ حِّي" } \\
& \text { arithmetic function = دالَّهُ حِسابِيَّة حِّة } \\
& \text { وَسَطُّ حِسابيّ } \\
& \text { مُتْو الِيةٌ حِسابيَّة } \\
& \text { مُمتَتالِيةٌ حِسابِيَّة } \\
& \text { arithmetic series = مُتسَلْسلةٌ حِسابيَّة حِّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { arithmetic sum = مَجْموعٌ حِسابيّ } \\
& \text { حِسِابِيّ } \\
& \text { جrithmetical addition }=\text { جَمْعٌ حِسابِيّ } \\
& \text { وَسَطُ هَنْدَسِيٌّ حِسابيّ حِّيٌ } \\
& \text { مُعُلَجةٌ حِسابيَّة } \\
& \text { ضrm of an angle = ضِلْعُ زاوِية حِئر } \\
& \text { array }=\text { صَفيفة } \\
& \text { Artinian ring = حَلَقةٌ أرتينيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { شَرْطُ السِّلْسلةِ الصَّاعِدة } \\
& \text { مُتْتَلِيةّ صاعِدة (مُتْز ايدة) } \\
& \text { ascending series = مُتسَسْسلةٌ صاعِدة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { asec (antisecant) = قَرْسُ القاطِع } \\
& \text { asech (arc-hyperbolic secant) =قَّسُ القاطِعِ الزَّأَئِدِيّ الِّاطِّ } \\
& \operatorname{asin}(\text { antisine) }=\text { قَّسُ الجَيْبِ } \\
& \text { قَوْسُ الجَيْب الزَّأِئِيّ } \\
& \text { مَصْفوفةٌ مُرْ افِقة } \\
& \text { associate operator = مُؤَتِّرٌ مُر افِق } \\
& \text { associated prime ideal = مِنالِيٌّ أوَّكِّ مُترَ افِق } \\
& \text { associated tensor }=\text { مُوتِّرْ مُ مُ افِق } \\
& \text { جَبْرٌ تَجْمِيِيّ } \\
& \text { associative law }=\text { قانونٌ تَجْميعِيّ } \\
& \text { astroid }=\text { مُنْحَنٍ نَجْمِيِّ (أستْروئيد) } \\
& \text { asymmetric (adj) = لاتناظُريّ } \\
& \text { مُقْقربِ } \\
& \text { مُنْحَن مُقارب مُمُرب } \\
& \text { asymptotic directions = اتِّجاهانِ مُقاربان } \\
& \text { صيغةٌ مُقاربة } \\
& \text { asymptotic series = مُتَسَلْسلةُ مُقاربة مُمربة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مُسْنْقِرٌّ تَقَرُبيَّا } \\
& \text { atan (antitangent) = قَرْسُ الظُّلَّرِّيّ } \\
& \text { atanh (arc-hyperbolic tangent) = قَرْسُ الظٌّلٌ الزَّأَئِيّ الُِلّ } \\
& \text { atlas }=\text { أطْلَس } \\
& \text { atom }=\text { ذَرَّة } \\
& \text { augend = مُضافِّ إِيْهُ } \\
& \text { augmentation }=\text { تَوْسيع } \\
& \text { augmented matrix = مَصْفوفةٌ مُوَسَّعة } \\
& \text { autocorrelation = ارتباطٌ ذاتِيّ } \\
& \text { autocorrelation function = دالْةُ ارْنباطٍِ ذاتِيّ } \\
& \text { تَغَيُرُّ ذاتِيّ } \\
& \text { automata theory = نَرَريَّةُ الأتْمَتَة } \\
& \text { automorphism = تَذاكُل (تَشاكُلٌ ذاتِيّ- أوتومورْفِيزْم) } \\
& \text { autoregressive series = مُتَسَلْسلةٌ مُنْكَفِئةٌ ذاتِيَّا } \\
& \text { مُعادَلَّةٌ مُساعِدة } \\
& \text { average }=\text { مُتَّسِّط } \\
& \text { average curvature = مُتوَسِّطُ التَقَوَسُسْ } \\
& \text { average deviation = مُتوَسِّطُ الانْحِرافات } \\
& \text { axial symmetry = تَناظُرٌ مِحْوْرِيّ } \\
& \text { مُمتَّجةٌ مِحْوَرِيّ } \\
& \text { axiom }=\text { موْضوعة } \\
& \text { axiom of Archimedes = مَوْوعةُ أرْخَميدِسِ } \\
& \text { axiom of choice = مَوْضوعةُ الانْتِينار } \\
& \text { axiomatic set theory = النَّظَيَّةُ المَوْضوعاتِيَّةُ لِلْمَجْموعات } \\
& \text { axis }=\text { مِحْوَر } \\
& \text { مِحْوَرُ الدَّوَرَران } \\
& \text { axis of symmetry = مِحْورُ التَّناظرُ } \\
& \text { azimuth }=\text { سَمْت }
\end{aligned}
$$

B

```
back-substitution = تَعْويض" تَراجُجِيّ
backward difference \(=\) فَرْقٌ رَجْعْي"
backward difference operator = مُؤَّرُ فَرْقِ رَّجْجِيّ رَحْيّ
backward induction = استِقْراءٌ رَجْعْيّ
Baire function = دالْةُ بير
Baire measure \(=\) قِياسُ بير
Baire set =مَجْموعةُ بير
Baire space = فَضاءُ بير بِير
Baire's category theorem = مُرْهَنَةُ الفِئِةِ لِبير برُ
balance equation = مُعادَلُّةُ تَوازُن
```



```
balanced digit system = نظامٌ رَقْمِيٌّ مُتوازِن
```



```
مَجْمْوعةٌ مُتوازنة
Banach algebra \(=\) جَبرُ باناخ
Banach space = فَضاءُ باناخ
Banach-Tarski theorem = مُبرَهْنةُ باناخ- تارسكي
bar chart = مُخْطَّطُ قُضْبْانيّي
bar graph = بَيانٌ قُضْبْانيّ
Bartlett's test = اختِبارُ بارتْليت
barycenter = مَرْكَزُ مُتَوَسِّط (مَرْكَزُ مَجْموعةِ نقاط)
```



```
base \(=\) أساس (قاعدة)
base angles = زاوِيَتا قاعِدة
base field = حَقْلٌ قاعِدِيٌّ
base for a filter = قاعِدةُ مُرَشِّحة (أساسُ مُرَشِّحة)
base for topology = قاعِدةُ طبولو جيا
base notation = تَدْوينٌ قاعِدِيّ
base period = دوْرُةٌ أساس"
```

$$
\begin{aligned}
& \text { مُمُّجّةٌ قاعِدِيّ } \\
& \text { basic solution = حَلٌّ قاعِدِيّ (حَلَّ أساسِيّ) } \\
& \text { basis = قاعِدة (أساس) } \\
& \text { basis theorem = مُبْهَنَنُ القاعِدة } \\
& \text { Bayes decision rule = قاعِدةُ بايز لاتِّخاذِ القَرار } \\
& \text { Bayes rule = قاعِدةُ بايِز } \\
& \text { Bayes' theorem = مُبرْهَنُةُ بايز } \\
& \text { Bayesian statistics = إحصاءُ بايز بريز } \\
& \text { Bayesian theory = نَظُرَيَّة بايز } \\
& \text { مَسْألةُ بيرنزْ- فيشَرُ } \\
& \text { bei function = دالَّةُ بايْ } \\
& \text { Bell numbers = أعدادُ بلْ } \\
& \text { bell-shaped curve = مُنْحَنٍ جَرَبِيٌُ الثُّكَّلْ بُلْ } \\
& \text { ber function = دالَّةُ بِرْ } \\
& \text { Bernoulli distribution = تَوْزيُ بِرْنولي } \\
& \text { Bernoulli equation = مُعادَلُّةُ بْنونوي بُني } \\
& \text { Bernoulli experiments =تَجارِبُ برنولي } \\
& \text { Bernoulli number = عَدَدُ بْنوني برئو } \\
& \text { Bernoulli polynomial = حُدودِيَّةُ برْنولي } \\
& \text { Bernoulli theorem =مُبَهْنَةُ بِرْنولي } \\
& \text { Bernoulli trials = مُحاوَلاتُ بِرْنولي } \\
& \text { Bernoulli's lemniscate = مُنْحَني بِرْنولِّي ذو العُرْوَتَيْنَن } \\
& \text { Bernoulli's law }=\text { قانونُ برنوبي } \\
& \text { Bernstein polynomials =حُدو دِيَّاتُ بْرْنُتْتاين } \\
& \text { مُمْحَنِ بِرْتران } \\
& \text { Bertrand's postulate = مُسَلَّمُةُ برْتران بُرْرن } \\
& \text { Bessel equation = مُعادَلُّةُ بِسل } \\
& \text { Bessel function = دالْةُ بسلْ } \\
& \text { Bessel inequality }=\text { مُتَباينةُ بِسل } \\
& \text { Bessel transform = مُحَوِّلُ بسل بسل }
\end{aligned}
$$

$$
\begin{aligned}
& \text { best estimate = التَّقْديرُ الأفْضنَل } \\
& \text { best fit }=\text { الأكثرُ مُلاءمَة" } \\
& \text { beta coefficient = مُعامِلُ بيتا } \\
& \text { beta distribution =تْزِيعُ بِيتا } \\
& \text { beta function = دالَّةُ بيتا بينا } \\
& \text { beta random variable = مُتَيْيِّرٌ عَشْوْ ائِيٌّ بِيتاوِيّ } \\
& \text { ورَزْنُ بيتا } \\
& \text { Betti group = زُمْرةُ بيتي } \\
& \text { Betti number = عَدَدُ بيتي } \\
& \text { Bézier curve =مُنحَني بيزييه } \\
& \text { Bézout's equality =مُساواةُ بيزو } \\
& \text { Bézout's identity = مُتطابقةٌ بيزو } \\
& \text { Bézout's theorem }=\text { مُرْهَنةُ بيزو }
\end{aligned}
$$

$$
\begin{aligned}
& \text { bias }=\text { انْحِياز } \\
& \text { biased error = خَطَّأٌ مْنحاز انحِّز } \\
& \text { biased estimator }=\text { مُقَدِّرٌ مُنْحاز مُحاز } \\
& \text { biased sample = عِيّنةٌ مُنْحازة } \\
& \text { biased statistic }=\text { إحْصَاءٌ مُنْحَاز مُرْ } \\
& \text { bicompact set = مَجْموعةٌ ثُنائِيَّةُ النَّراصّ } \\
& \text { عَمَمِلَّةٌ ثُنائِيَّةُ الثنَّرُطْ } \\
& \text { عِبارةٌ ثُنائِيَّةُ الشَّرْط } \\
& \text { biconnected graph = بَيانٌ ثُنائِيُّ التَّرابط }
\end{aligned}
$$

$$
\begin{aligned}
& \text { bicorn =ثُنائِيُ القَرْن } \\
& \text { Bieberbach conjecture }=\text { مُخَمَّنةُ بيبرْبانِ } \\
& \text { bifurcation }=\text { تَشْعِبب } \\
& \text { bifurcation theory =نظرَيَّةُ التَّشْعِيب } \\
& \text { دالَّةٌ ثُنائِيَّةُ التُّورافُقُ } \\
& \text { bijection = تَقابُل }
\end{aligned}
$$

$$
\begin{aligned}
& \text { bijective mapping = تَطْبيقٌ تَقابُلِيّ } \\
& \text { bilateral convolution = تَلاونٌّ ثُنائِيُّ الجانب }
\end{aligned}
$$

$$
\begin{aligned}
& \text { bilinear expression =عِبارةٌ ثُنائِيَّةُ الحَخَطِّةُة } \\
& \text { bilinear form = صيغةٌ ثُنائِيَّةُ الخَطِيّّةُة } \\
& \text { دالَّةٌ ثُنائِيَّةُ الحَطِّيّة } \\
& \text { bilinear mapping = تَطْبيقٌ ثُنائِيُّ الَخِّيّّة } \\
& \text { bilinear transformations =تحْوِيلاتٌ ثُنائِيَّةُ الحَطِيَّة } \\
& \text { bimodal distribution }=\text { تَوْزيعٌ ثُنائيُ المِنْو ال } \\
& \text { رُقْمٌ اثْنانِيّ } \\
& \text { binary notation = تَدْ ينٌ اثْنانيّ } \\
& \text { binary number = عَدَدٌ اثْنانيّ } \\
& \text { binary number system = نظامُ العَدِّ الأْثانِيّ } \\
& \text { رُقْمٌ اثْنانيّ } \\
& \text { binary operation = عَمَلِيَّةٌ اثنانيَّة (قانونُ تَشْكيل داخحِلِيّ) } \\
& \text { binary point = نُقْطةٌ اثْنانيَّة (فاصِلةٌ اثْنانيَّة) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { binary relation = عَلاقةٌ اثْنانيَّة } \\
& \text { مُتْتالِيةٌ اثْنانَيَّة } \\
& \text { binary system }= \\
& \text { binary tree }=\text { شَجَرَةٌ اثْنانَيَّة } \\
& \text { binary variable }=\text { مُتَغِيرِ } \\
& \text { binomial = حَدَّانيَّة } \\
& \text { binomial array = حَفيفةٌ حَدَّانيَّة } \\
& \text { binomial coefficient = مُعامِلِ حَدَّانيّ حِّ } \\
& \text { binomial differential = تَفاضُل حِدَّانيّ حِّاتي } \\
& \text { binomial distribution = تَزْيُعٌ حَدَّانيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { binomial expansion = نَشْرٌ حَدَّانيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { binomial experiment = تَجْربةٌ حَدَّانَّةَ } \\
& \text { binomial law = قانونُ الحَدَّانَّة } \\
& \text { binomial random variable = مُتَفِّيرّ عَشْوْ ائِيٌّ حَدَّانِيّ } \\
& \text { binomial series = مُتسَلْسلةُ حَدَّانَّيَّة } \\
& \text { binomial surd = حَدَّانَيَّةٌ صَمَّاء } \\
& \text { binomial theorem =مُبْهَنُةُ الحَدَّانَّةُ } \\
& \text { binomial trials = مُحاوَلاتٌ حَدَّانَّيَّة } \\
& \text { Binormal = ُنائِئُ النَّاظِم } \\
& \text { دَليلُ ثُنائيِّ النَّاظِم } \\
& \text { biostatistics = عِلْمُ الإحْصاء الحَيَويّ } \\
& \text { مُمْحْنٍ تَكْعِيبٌٍ ذو فَرْعَيْن (شَطْرُ انِيّ) } \\
& \text { bipartite graph = بَيانٌ ذو فَرْعَيْن (شَطْرْ انيّ) } \\
& \text { bipolar coordinate system }=
\end{aligned}
$$

$$
\begin{aligned}
& \text { مِمْدادٌ ثُنائِيٌ خُماسِيّ } \\
& \text { biquinary notation = تَدْرينٌ ثُنائِيٌّ خُماسِيّ } \\
& \text { birectangular (adj) = قائِمُ الزَّاويَيَّنْن } \\
& \text { birth process = إجر ائِيَّةُ الوِلادة } \\
& \text { birthdays problem = مَسْألةُ تَواريخ الميلاد }
\end{aligned}
$$

$$
\begin{aligned}
& \text { خُو } \\
& \text { bisector }=\text { مُنصِصِّ زاوِية } \\
& \text { bisectrix = مُنَصِّنُ زاوية } \\
& \text { bit }= \\
& \text { bitangent = مُماسٌٌ مُزْدَوْج } \\
& \text { تَقَابُلُ ثُنائِيُّ الاتِّجاه } \\
& \text { bivariate distribution = تَزْيعِ لِمُتَيِّيرَيْن } \\
& \text { مُبرَهْنَةُ بْلاشْكي } \\
& \text { block design = تصْمْيمٌ كُتُلِيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { block multiplication = ضرْببٌ كُتُليّي } \\
& \text { blocking = تَكْتِيل } \\
& \text { blurring }=\text { تَضْبيب } \\
& \text { جسْمْ دَوَرَانيّ } \\
& \text { Bolyai geometry = هُنْدَسُةُ بولْياي } \\
& \text { Bolzano's theorem = مُبرْهَنُةُ بولْز انو } \\
& \text { Bolza's problem = مَسْألةُ بولزْ } \\
& \text { مُتُباينةُ بُول = Boole's inequality } \\
& \text { Boolean algebra }=\text { جَبْرُ بُول (جَبْرٌ بولْيانِيّ) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Boolean function = دالّْةُ بُول (دالَّةٌ بولْيانيَّة) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Boolean ring =حَلَقُةُ بُول (حَلَقةٌ بولْيُنَيَّة) } \\
& \text { bordering for a determinant = مُتاخَمةُ مُحَدِّدة } \\
& \text { Borel measurable function = دالُّة بوريل القَيوسة } \\
& \text { قِياسُ بوريل } \\
& \text { Borel set =مَجْموعةُ بوريل } \\
& \text { Borel sigma algebra }=\text { جَبرُ-سيغما بوريل } \\
& \text { شَرْطٌ حَدِّيّيّ } \\
& \text { boundary of a set = جَبْهُة مَجْموعة (مُحيطُ مَجْموعة) } \\
& \text { boundary point }=\text { نُقْطُّةٌ مَحيطِيَّة } \\
& \text { boundary value problem = مَسْألةُ القِيَّمِ الحَحِيّةَة } \\
& \text { bounded difference =فَرْقٌ مَحْدود } \\
& \text { bounded function = دالَّهُ مَحْدودة } \\
& \text { bounded growth (adj) = نُمُوٌٌ مَحْدود } \\
& \text { bounded linear operator = مُؤَّرّْ خَطِّيٌّ مَحْدود } \\
& \text { bounded product = جُداءٌ مَحْدُودود } \\
& \text { bounded sequence = مُتنَالِيُّهُ مَحْدودة } \\
& \text { bounded set = مَجْموعةٌ مَحْدودة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { bounded set from above = مَجموعةٌ مَحْدو دةٌ من الأعْلَى } \\
& \text { bounded set from below = مَجْموعةٌ مَحْدو دةٌ من الأدنْىَى } \\
& \text { bounded sum = مَجْموعٌ مَحْدْود } \\
& \text { bounded variation =تَغيُرٌ مَحْدود } \\
& \text { box = صُندوق } \\
& \text { boxcar function = دالَّةٌ صُنْدورِيَّة } \\
& \text { braces = قَرْسانِ مُتَعرَّجِّان } \\
& \text { brackets = قَوْسانِ مَعْقو فان } \\
& \text { branch }=\text { فَرْع }^{\circ} \\
& \text { branch cut = قَطْعٌ تَشَعُبِيّ (تَفَرُعِيّ) } \\
& \text { branch point }=\text { نُقْطُُ تَشْعُبُبُ (تَفَرُّعُع) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { نَظَرِيَّةُ التَّشْعْعُبُ (التَّفَرُعُع) } \\
& \text { breakdown law = قانونُ التَّجْزيء } \\
& \text { مُمرْهَنَةُ بُريانْشون } \\
& \text { bridge }=\text { جسر } \\
& \text { broken line = خَطُّ مُنْكَسر } \\
& \text { Brouwer's theorem = مُبرْهَنُةُ بْراورَ } \\
& \text { Brun's constant = ثابتةُ بُرون } \\
& \text { Brun's theorem =مُرْهَنَةُ بُرون بُرنُ } \\
& \text { Budan's theorem =مُرْهَنَةُ بودان } \\
& \text { Buffon's problem = مَسْألةُ بوفون ون ون } \\
& \text { مُنْحَني أنْفِ الرَّصاصة } \\
& \text { bundle }=\text { حُزْمة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Buniakowski's inequality =مُتبايِنُة بونِياكوفْسْكَي }
\end{aligned}
$$

$$
\begin{aligned}
& \text { byte }=\text { بايْت }
\end{aligned}
$$

$$
\begin{aligned}
& \text { C } \\
& \text { calculation = حِساب } \\
& \text { calculus = حُسْبانُ التَّفاضُلِ والتُّكامُل } \\
& \text { calculus of enlargement =حُسْبانُ التَّوْسيع } \\
& \text { calculus of finite differences =حُسْبانُ الفُروق المُنْتَهية } \\
& \text { calculus of residues = حُسْبانُ الْبُو اقي (حُسْبانُ الرَّواسِب) } \\
& \text { calculus of tensors =حُسْبُنُ المُوتِّرات } \\
& \text { calculus of variations =حُسْبُنُ التَّفُّيرات } \\
& \text { calculus of vectors =حُسْبُ المُتُجِهات } \\
& \text { canal surface = سَطْحٌ قَنَوِيّ } \\
& \text { cancel (v) = يَحْذِف، يَشْطُبُ } \\
& \text { cancellation law }=\text { قانونُ الانْتْزِ ال (الانْنِصار) } \\
& \text { canonical basis = قاعِدٌة قانونِيَّة } \\
& \text { canonical correlation = ارتباطٌ قانونيّ } \\
& \text { Cantor function = دالْةُ كانْتور } \\
& \text { Cantor set = مَجْموعةُ كانتور }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Cantor theorem = مُبْهَهَنُ كانْنور } \\
& \text { Cantor's axiom = مْوْضوعةُ كانْتور }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Cantor's paradox = مُحَيِّرةُ كانْتور } \\
& \text { Cardano formula }=\text { صيغةُ كاردانو كويرُ } \\
& \text { cardinal number = عَدَدٌ أصْلِيّ } \\
& \text { cardioid = الُمْحَني القَلْبِيّيّ } \\
& \text { Carleson's theorem =مُبْهَنهُ كارِلْسون } \\
& \text { carry (v) =يُرَحِّل (يَحْمِل) } \\
& \text { Cartesian axis = مِحْرَرْ ديكارتيّ (يَحِّ } \\
& \text { Cartesian coordinates = الإحداثِثَّاتُ الدِّيكارتِّيَّة } \\
& \text { Cartesian distance = مَسافةٌ ديكارتيَّة } \\
& \text { Cartesian geometry = الهْنَدَسُُ الدِّيكارتِيَّة ديَّةُ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Cartesian plane = مُسْنَو ديكارتيّيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Cartesian space = فَضاءٌ ديكارتيّ } \\
& \text { Cartesian square = مُرَّعٌ ديكارتيّ ديّيّ } \\
& \text { Cartesian surface = سُطْحٌ ديكارتي" ديّ } \\
& \text { Cartesian tensor =مُوتِّرٌ ديكارتيّ ديّ } \\
& \text { Cassini ovals = بَيْوَيَّاتُ كاسيني } \\
& \text { casting-out nines = إسقاطُ التّسْعْات } \\
& \text { Catalan conjecture = مُخَمَّنُ كاتاتلان الُمنات } \\
& \text { Catalan constant = ثابتةُ كاتالان } \\
& \text { Catalan numbers = أعدادُ كاتالان } \\
& \text { catastrophe theory = نَظَريَّةُ الكَوارِث } \\
& \text { category = فِئة (طائفةة) } \\
& \text { catenary = مُنْحَني السُلَيْسِلة } \\
& \text { catenoid = سَطْحٌ سُلَيْسِلِيّ } \\
& \text { caterer problem = مَسْألةُ مُتَهَهِّدِ المَطْعَمْ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Cauchy distribution = تْزْيعُ كوشي ليخي } \\
& \text { Cauchy formula = صيغةُ كوشي كي } \\
& \text { Cauchy inequality = مُتباينةُ كوشي } \\
& \text { Cauchy integral formula }=\text { صيغةُ كوشي التَّكامُلْيَّة } \\
& \text { Cauchy integral test = اختِبارُ كوشي التُّكامُلِيّ } \\
& \text { Cauchy net }=\text { شَبَكُُ كوشي } \\
& \text { Cauchy principal value = قيمةُ كوشي الأساسِيَّة }
\end{aligned}
$$

> Cauchy product $=$ جُداءُ كوشي
> Cauchy random variable = مُتَفيِرُ كوشي العَشْْو ائئي
> Cauchy ratio test = اختِبارُ النّسْبْةِ لِكوشي
> Cauchy's integral theorem = مبَرْهَنُة كوشي في التَّكامُل
> Cauchy's radical test = اختِبارُ الجَذْرِ لِكوشي

$$
\begin{aligned}
& \text { Cauchy's residue theorem = مُبْهَنَةُ الرَّواسِب لِكوشي }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Cauchy's test for convergence = اختِبارُ كوشي للنَّقارُب } \\
& \text { Cauchy-Hadamard theoerm = مُبْهَنَةُ كوشي-آدامار كورُ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Cauchy-Schwarz inequality = مُنَباينةُ كوشي-شْفارْنز }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Cayley algebra }=\text { جَبرُ كايْلي } \\
& \text { Cayley numbers = أعدادُ كايْلي }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Cayley-Klein parameters = وُسُطاءُ كايْلي-كْلاين } \\
& \text { Cayley's sextic = مُنْحَني كايْلي السداسيُّ المَرْتَبة } \\
& \text { Cayley's theorem =مُبْهَنَةُ كايْلي } \\
& \text { ceiling = سَقْفُ عَدَدٍ حَقِيقيّي } \\
& \text { ceiling function = دالَّةٌ سَقْفِيَّة } \\
& \text { cell }=\text { خَلِيَّة } \\
& \text { census = تَعْدادٌ شامِل } \\
& \text { center }=\text { مَرْكَز } \\
& \text { center of area = مَرْكَزُ المَساحة } \\
& \text { center of curvature = مَرَكُز التَّقوُسُس } \\
& \text { center of figure = مَرْكَزُ الشَّكل } \\
& \text { center of geodesic curvature = مَرْكَزُ التَّقَوُس الجِيوديزيّ } \\
& \text { center of inversion = مَرْكَزُ التَّعاكُس } \\
& \text { center of normal curvature = مَرْكَزُ التَقَوَسُس النَّاظِمِيّ } \\
& \text { center of principal curvature =مَرْكَرُ التَقَوَسُ الأساسِيّ } \\
& \text { center of projection = مَرْكَرُ الإسْقاط } \\
& \text { center of similitude = مَرْكَزُ المُشابَهة الانَاطة } \\
& \text { center of spherical curvature = مَرْزُ التَّقَّسُس الكُرُوِيّ } \\
& \text { center of volume =مَرْكزُ الحَجْم } \\
& \text { centile }=\text { مِئِينيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { central angle = زاويةٌ مَرْكَزيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { central difference }=\text { فَرْقٌ مَرْكَرِيّ } \\
& \text { central limit theorem = مُبرْهَنُةُ النّهايةِ المَرْكَزِيَّةُ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { centralizer }=\text { مُمَرْكِز } \\
& \text { centre }=\text { مَرْكَز } \\
& \text { centroid of a triangle }=\text { مَرْكَزُ مُثَلَّث } \\
& \text { Cesàro summation }=\text { جَمْعُ تشيزارو } \\
& \text { Ceva's theorem =مُرْهَنُةُ نُشيڤًا } \\
& \text { chain = سِلْسلة } \\
& \text { chain rule = قاعِدةُ السِّلْسِلة } \\
& \text { characteristic curve = مُنْحَنٍ مُمِّيِّ } \\
& \text { مُمُعَدَلةٌ مُمَيِّزة } \\
& \text { characteristic number = عَدَدٌ مُمِيِّز } \\
& \text { characteristic of a logarithm = مُميِّزُ اللُّفارِتْمْ العَشْرْ } \\
& \text { characteristic root }=\text { جَذْرٌ مُمِيِّ } \\
& \text { characteristic value = قيمةٌ مُمِيزِّة } \\
& \text { مُتُّجهُ مُمْيِّزِ } \\
& \text { Charpit's method = طَريقُُ شارْبي } \\
& \text { Chebyshev approximation =تَرْ يبُ تُشيبيْشُيف } \\
& \text { Chebyshev norm = نَظُمُ تْشيبيتُشيف } \\
& \text { Chebyshev polynomials = حُدو دِيَّاتُ تشيبيتْشيف } \\
& \text { Chebyshev's inequality = مُتباينةُ تْشيبيتْشَيف } \\
& \text { chi-square distribution = تَوْزيعُ كايْ مُربَّعَع } \\
& \text { chord }=\text { وتَّر } \\
& \text { Christoffel symbols = رُموزُ كريسْنوفل } \\
& \text { cipher }=\text { صِفْر } \\
& \text { circle }=\text { دائِرة } \\
& \text { circle graph = مُخَطّْطٌ دائريّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { circle of convergence = دائرةُ التُّقارُب } \\
& \text { circle of curvature = دائِرةُ التَتَوُوُس } \\
& \text { circle of inversion = دائِرة التُّعا كُس الُوسِ } \\
& \text { circles of ellipse = دائِرَتا القَطْعُ النَّاقِص } \\
& \text { circles of hyperbola = دائِرَتا القَطْعِع الزَّائِدند } \\
& \text { circulant determinant = مُحَدِّدةٌ دَوَّارة } \\
& \text { circulant matrix = مَصْفوفةٌ دَوَّارة } \\
& \text { circular arc = قَوْسٌ دائريّ } \\
& \text { circular cone = مَخْروطٌ دائِريّ } \\
& \text { circular conical surface = سَطْحُ مَخْروطِيٌّ دَورانيّ } \\
& \text { circular cylinder = أُسطُوانةٌ دائرِيَّة } \\
& \text { circular function = دالَّةٌ دائرِيَّة } \\
& \text { circular helix = لَوْبَبٌ دائِري" } \\
& \text { circular measure =قِياس" دائرِيّ } \\
& \text { circular motion =حَركةٌ دائرِيَّة } \\
& \text { circular permutation = تَبْديلٌ دائرِيّ } \\
& \text { circular point = نُقْطةٌ دائرِيَّة } \\
& \text { circular polygon = مُضَلّْعٌ دائرِي"ّ } \\
& \text { circular sector }=\text { قِطا } \\
& \text { circular segment = قِطْعُةٌ دائِرَّة } \\
& \text { circular triangle }=\text { مُثَلْثٌ دائرِيَّ } \\
& \text { circumcentre = مَرْزَزُ دائِرةِ مُحيطة } \\
& \text { circumcircle = دائِرةٌ مُحيطة مُحِة } \\
& \text { circumference = مُحيط، مُحيطُ دائِرة } \\
& \text { circumference of a sphere }=\text { مُحيط كُرة } \\
& \text { circumradius =نصْنُ قُطْر دائِرٍ مُحيطة } \\
& \text { circumscribed sphere = كُرةٌ مُحيطة مُحِّ } \\
& \text { cissoid = الُمْحَني اللَّبْابِبيّ } \\
& \text { class frequency = تَكْرارُ صَفِّ (وفِئة) } \\
& \text { class interval = مَجالُ صَفِّ (فِئةّ) صِّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { class mark = عَلامةُ صَفِّ (فِئُة) } \\
& \text { Clement matrix }=\text { مُصْفوفةُ كْلِمَنْت } \\
& \text { clique }=\text { عُصْبة } \\
& \text { clock addition = جَمْعٌ ساعاتِيّ } \\
& \text { clock arithmetic =حسابٌ ساعاتِيّ } \\
& \text { clock multiplication }=\text { جُداءٌ ساعاتِيّ } \\
& \text { clockwise (adj) = باتِّجاهِ دَوَرانِ عَقارِب السَّاعة } \\
& \text { clopen (adj) = مُغْلَقُ وَمَفْتوح } \\
& \text { closed (adj) }=\text { مُفْلَقة } \\
& \text { closed ball = كُرةٌ مُغْلَقة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { closed covering = تَغْطِيٌة مُفْلَقة } \\
& \text { closed curve = مُنْحَنٍ مُغْلَق } \\
& \text { closed disk = قُرٌْ مُغْلَق } \\
& \text { مُبرْهَنةُ البَيانِ الُمْْلَق } \\
& \text { closed half plane }=\text { نصْنُ مُسْنُو مُغْلَق } \\
& \text { closed half space = نصْفُ فَضاء مُفْلَق } \\
& \text { closed interval = مَجاللٌ مُغْلَق } \\
& \text { closed linear manifold = مُتَنَوِّةٌ خَطِّيَّةٌ مُغْلَقة } \\
& \text { closed map = تَطْبيقٌ مُغْلَق } \\
& \text { مُؤَتِّرٌ مُفْلَق } \\
& \text { closed set = مَجْموعةٌ مُفْلَقة } \\
& \text { closed surface =سَطْ مُغْلَق } \\
& \text { closure = غُلاقة (لُصاقة) } \\
& \text { coarsest topology }=\text { الطبولوجيا الحَشْنْاء }
\end{aligned}
$$

$$
\begin{aligned}
& \text { coaxial planes =مُسْنَوِياتٌ مُنَّحِدةُ المِحْوْرَ } \\
& \text { cochleoid = مْنحَنٍ صَدَفِي" } \\
& \text { codomain = مَجالٌ مُقابلِ لِدُالَّة } \\
& \text { coefficient = مُعامِل }
\end{aligned}
$$

$$
\begin{aligned}
& \text { coefficient of alienation =مُعامِلُ الاغْتِراب } \\
& \text { coefficient of concordance = مُعامِلُ المُطابِقة (الاتِّاقر) } \\
& \text { coefficient of contingency = مُعامِلُ التَّو افُقى } \\
& \text { coefficient of skewness = مُعامِلُ الالْتِوْاء } \\
& \text { coefficient of variation = مُعامِلُ التَتُغيُرُ } \\
& \text { cofactor = عامِلٌ مُر افِق } \\
& \text { cofunctions = دالَّانِ مُتَتامَّتان انِّن } \\
& \text { cohomology theory = نَظَرِيَّةُ الكوهومولوجيا } \\
& \text { coincident (adj) = مُتطابِق } \\
& \text { collinear planes = مُسْتَ ياتُ مُ مُتسامِتة } \\
& \text { collinear points = نِقاطٌ مُتْسامِتة } \\
& \text { collinear vectors = مُتّجهاتٌ مُتَسامِتة مُسْتُ } \\
& \text { collineation = تَسامُت } \\
& \text { collineatory transformation =تَحْ يلٌ تَسامُتِيّ } \\
& \text { column = عَمود } \\
& \text { column equivalence = تَكافُؤٌ بعَمَلِّيَّاتِ أعْمِدة } \\
& \text { column matrix = مَصْفوفةٌ عَمودٌ } \\
& \text { رُتْبُةُ أُعْمِة عِمْ } \\
& \text { column space }=\text { فَضاءُ أُعْمِدة } \\
& \text { مُمُّجةٌ" عَمودٌ } \\
& \text { combination = تَوْفيقة } \\
& \text { combinatorial analysis = النَّحْليلُ التَّو افيقِيّ } \\
& \text { combinatorial proof }=\text { بُرْهانٌ تَو افيقي" الـيّي } \\
& \text { combinatorial theory = نَظَيَّةُ التُّو افيقِيَّات } \\
& \text { combinatorial topology }=\text { الطبولوجيا التُّ افيقِيَّة } \\
& \text { combinatorics = الرِيّاضِيَّاتُ النَّو افيقِيَّة } \\
& \text { common denominator = مَقامٌ مُشْنْرَكَ (مَخْرَجْ مُشْتُرَكَك) } \\
& \text { common difference }=\text { فَرْقٌ مُشْتْرَ }
\end{aligned}
$$


```
    common multiple = مُضاعَفٌ مُشْتْرَك
common perpendicular = عَمودٌ مُشْنْرَك
        common ratio = نسبْةٌ مُشْترُكة)
        common side = ضِلْعٌ مُشْترَك
        common tangent = مُماسٌّ مُشْنٌ%)
        commutative (adj) = تَبْديلِيّ
    ججبْرٌ تبْديلي"
    commutative diagram = مُخَطُّطٌ تَبْديليّ"
```



```
        ححَلَقةٌ تَبْديلِيَّة ت
        commutator = مُبَدِّل
jom,
```



```
        compact set = مَجْموعةٌ مُتٌاصَّة)
        compact space = فَضاءٌ مٌتُراص% م
    compact support = حامِلٌ مٌتراصّ م
    compactification = رصّ 
```



```
    compactum = مُرْصص` 
comparable functions=(م)
comparison property = خاصِيّة، مُقارَنة)
    comparison test = اختببارُ المُقارَنة
        compass = فِرْجار
    complement = مُتَمِّم
jاوريةٌ مُتَمِّمة"
```

$$
\begin{aligned}
& \text { complementary function = دالّْةٌ مُتَمِّمة } \\
& \text { complementary minor = صُغَيْرِ مُتْمِّم } \\
& \text { complementary operation = عَمَلِيَّةٌ مُتَمِّمة } \\
& \text { complementary set = مَجْموعةٌ مُتَمِّمة } \\
& \text { complementation }=\text { تَنْميم } \\
& \text { complementation law }=\text { قانونُ تُتميم } \\
& \text { complemented lattice = شَبَكةٌ مُتَمَّمة } \\
& \text { complete elliptic integral = تَكمُلْ ناقِصيٌٌ تامٌ } \\
& \text { complete four-points = رُبايِّةٌ تامَّة } \\
& \text { complete graph }=\text { بَيانٌ تامٌ } \\
& \text { complete induction = استِقْراءٌ تامٌ } \\
& \text { complete integral = تَكامُلٌ تامٌ } \\
& \text { complete lattice = شَبَكُّ تامَّة } \\
& \text { complete limit = نهايةٌ تامَّة } \\
& \text { complete matching = مُواءُمَةٌ تامَّة } \\
& \text { complete measure }=\text { قِياسٌ تامٌ } \\
& \text { complete metric space = فَضاءٌ مِترِيُّ تامٌّ } \\
& \text { complete order = تَرْتيبٌ تامٌ } \\
& \text { complete ordered field = حَقْلٌ مُرَتَّبٌ تامٌ } \\
& \text { مَمَجْوعةٌ مُتَعامِدةٌ مُنَّمَّةٌ تامَّة } \\
& \text { رُباعيُّ زُوايا تامٌ } \\
& \text { complete space = فَضاءٌ تامٌ } \\
& \text { completely normal space = فَضاءٌ عادِيٌّ تَمامًا } \\
& \text { مَجْمْوعةٌ مُرَّبَّةٌ تَمامًا } \\
& \text { completely regular space =فَضاءٌ مُنْتَمَّ تَمامًا } \\
& \text { completely separable space =فَضاءٌ فَصولٌ تَمامًا } \\
& \text { completeness axiom = مَوْورعةُ التَّمامِيَّة } \\
& \text { completing the square = الإكْمالُ إلى مُرَّعُع } \\
& \text { completion }=\text { تَتْميم } \\
& \text { complex }(a d j, n)=\text { عُقَدِيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { complex analysis = التُّحْليلُ الُُقَدِي"ّ } \\
& \text { complex conjugate }=\text { مُر افِقِّ عُقَدِيّ } \\
& \text { complex domain (field) = ساحةٌ عُقَدِيَّة (حَقْلٌ عُقَدَيِّ) } \\
& \text { complex Fourier series = مُتَسَلْسلةُ فورْيِهِ الُعُقَدِيَّة } \\
& \text { complex fraction }=\text { كَهرٌ مُرُكَّبِّ } \\
& \text { complex function = دالَّةٌ عُقَدِيَّة } \\
& \text { complex integer = عَدْدٌ صَحيحٌ عُقَدِيّ } \\
& \text { complex integral = تَكامُلْ عُقَدِيّ } \\
& \text { complex measure = قِياسٌ عُقَدِيّ } \\
& \text { complex number = عَدَّ عُقَدِيّ } \\
& \text { مَنْظُومةُ الأعْدادِ الُُقَقِيَّةِ } \\
& \text { complex plane =مُسْتو عُقَدِيّ } \\
& \text { complex point = نُقْطُّ عُقَدِيَّة } \\
& \text { complex roots of an equation = الجَذْرانِ الُعُقَدِيّان لِمُعادَّةٍ } \\
& \text { complex sphere =كُرةٌ عُقَدِيَّة } \\
& \text { complex unit = وَحْدةٌ عُقَدِيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { component }=\text { مُرُكِّة } \\
& \text { component bar chart = مُخَطَّطٌ قُضْبْانيٌّ بالُُكَوْنِات } \\
& \text { component of a graph = مُرَكِّةُ بَيان } \\
& \text { component of a vector = مُرَكِّةُ مُتَّجهُ بِّهُ } \\
& \text { component of the stress tensor = مُرَكِّةُ مُوتِّرُ الجُجْنُ } \\
& \text { composite function = دالَّةٌ مُرَكَّبةُ } \\
& \text { زُزمْرُّ مُرَكُّة } \\
& \text { composite hypothesis =فَرْيِّةٌ مُرُكَّةُ } \\
& \text { composite number = عَدَدٌ مُرُكَّبِ (عَدَدٌ غَيْرُ أوَّبَّي) } \\
& \text { composite quantity }=\text { مِقْدارٌ مُرَكُّبِّ } \\
& \text { composite relation = عَلاقةٌ مُرَكُبَّة } \\
& \text { composition of functions = تَرْكيبُ دَوالّ } \\
& \text { composition of relations = تَرْكيبُ عَلالقَتْنْ }
\end{aligned}
$$


```
    مُمُحْحِن مُرَكّب"
```



```
    compound interest = فائِدٌ مُرَكبّة)
    compound number = عَدُدٌ تَرْكبيبي"
comprehension axiom = موْضوعةُ الاشْتِمال)
    computability theory = نَظرَيُّهُ
    computable function = دالّْةٌ حَسُوبة (قابلةٌ للحِساب)
        computation = حَوْسْبَ
computational statistics = إحصاءٌ حَوْسْبِيّ،
        computer = حاسوب
```



```
    concave function = دأَهٌٌ مُقَعَرة)
```



```
    مُتُعَعِّدُ وُجوهٍ مُقعَر
```



```
        concavity = تَعُعٌ
```



```
            مُنْحْحِ صَدَفِيّ"
    concurrent lines = مُسْتقيماتٌ مُتَقاطِعة (مُتَلاقِية)
```



```
        <،_
            condition = شَرْط
    condition number = عَدُدُ
conditional convergence = =قارُبٌ شَرْطِيّ
conditional distribution = تُوْزيعٌ (شَرْطِ")
```

$$
\begin{aligned}
& \text { مُعادَلةٌ شَرْطِيَّة } \\
& \text { conditional expectation = تَوَقُقٌ شَرْطِيّ (تَوَقُعٌ مَشْرُ طو) } \\
& \text { conditional frequency = تَكْرارٌ شَرْطِي" } \\
& \text { conditional implication }=\text { اقْتِضاءٌ شَرْطِيّ } \\
& \text { conditional inequality = مُتباينةٌ شَرْطِّةّة } \\
& \text { conditional probability }=\text { احتِمالْ شَرْطِيّ } \\
& \text { conditional statement }=\text { تَرْرير" شَرْطِيّ } \\
& \text { مَجْمْوعةٌ مُتر اصَّةٌ شَرْطِيًّا } \\
& \text { cone }=\text { مَخْرور } \\
& \text { cone of revolution }=\text { مَخْروطٌ دَورَانيّ } \\
& \text { confidence }=\text { ثِقة } \\
& \text { confidence coefficient = مُعامِلُ النّقة } \\
& \text { confidence interval = مَجالُ الثّقة } \\
& \text { confidence level = مُسْتَوَى الثِّقة } \\
& \text { confidence limits = حَدَّا الثّقة } \\
& \text { configuration = تَشْكيلة } \\
& \text { confocal conicoids = سُطوحْ مَخْروطِيَّةٌ مُتَّحِدُ البُؤرة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { إحدانِيَّاتٌ مُتَّحِدُّ البُؤْرَتْتَنْ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { conformable matrices = مَصْفو فَتانِ مُتْوا افِقَتان } \\
& \text { conformal mapping = تُطْيقٌ مُحافِظ } \\
& \text { conformal transformation = تَحْويلُ مُحافِظ } \\
& \text { congruence }=\text { تَطأُقق } \\
& \text { congruence class =صَفُّ تطابُق } \\
& \text { congruent figures = شَكْلانِ مُتططابِان } \\
& \text { congruent matrices = مُصْفو فَتانِ مُتُطابقَتان مُمان } \\
& \text { congruent numbers = عَدَدانِ مُتَطابقان } \\
& \text { conic sections = قُطوعٌ مَخْروطِيَّة } \\
& \text { conical helix = كَْْبَبْ مَخْروطِيّ }
\end{aligned}
$$


```
        conjecture = مُخْمَّنة)
```



```
        conjugate arcs = قَوْسانِ مُتُرإِقان)
```



```
        conjugate curves = مُنحخنيانِ مُترافِقان)
```



```
            بُؤُرْتَانِ مُترَ إفِقتان)
            conjugate function = دالَّةٌ مُرافِقة)
```



```
    قَطْعْانِ زائدانِ مُتُر افِقان
        conjugate lines = خُطّانِ مُتر افققان
    conjugate partition = تَجْزئٌٌ مُرافِقة)
        conjugate planes = مُسْتُيانٍ مُترإِقان
```



```
        conjugate radicals = عَدُدانِ جَذْرِّيَّانِ مُتر/ افقِان)
        conjugate roots = جَذْرانِ مُترإِقان)
```



```
        conjugate space = فَضاءٌ مُر افِق c
```



```
    conjunction = عُطْف 
```



```
conjunctive transformation = تحْوِيلٌ مُترافِق)
            con
            connected relation = عُلاقةٌ مُترابطبة)
            connected set = مَجْموعةٌ مُترابطة)
            connected space = فَضاءٌ مُترابط 
            connected surface = سُطْحٌ مُترابِط 
```



```
            conoid = مَخْروطانيّ
        jاو
        consecutive integers = أعدادٌ صَحيحةٌ مُتعاقِبة)
        \mathrm{ consecutive sides = \ِلْعانِ مُتَجاوِران}
            consequence = نُيجة
            consequent = نُتيجة
```



```
        مُمعادَلاتٌ مُتّسقة)
            constant = ثابتة
            constant function = دالّْةٌ ثابتة)
            constant mapping = تَطْبيق* ثابت
            constant matrix = مُصْفوفةٌ ثابتة)
    * constant of integration = ثابتةُ' الُمكامَلة)
**)
            constant term = حَدٌ ثابت
constant-effect model = نَموذَجُ
            constants = ثُوابت
    constraint function = دالُْةُقَمْد
```

```
        \⿴囗丷بْني، يُنْشِئ
```



```
        construction = إنشاء
    contact transformation = تُحْويلُ التُّماس"
```



```
    contagious distribution = تَوْزيعٌ سارٍ
        contain (v) = يَحْتَوي
    contextual definition = تَعْريفٌ سِياقِيّ`***
    contiguous functions = دالّنا تَماس"
        contingency table = جَدْوْلُ
            continuant = مُتّصNِلة
        continuant matrix = مُصْفوفةٌ مُتّصِلة"
    continued equality=0
    continued fraction = كسْرٌ تَسَلْسُلِي"ّ
    continued product = جُداء تَسَلْسُلِيّ"
    0مُمادَلةُ الاسْتِمْرار
        continuous (adj) = مُسْتْمِرّ 
    continuous deformation = =تشْويهٌ مُسْتمرِّ
```



```
        continuous function = دالّْةٌ مُسْتْمِرَّة
        continuous geometry = المُندَسةُ المُستْمِرَّة)
        continuous image= = صورٌ مُسْتْمِرَّة)
    continuous on the left = مُستْمِرٌّ من اليَسار
```



```
    continuous population = مُجْتَمَعٌ إحْصائِيٌّ مُسْتمرِّN
```



```
continuous transformation = تَحْوِل مُسْتَمِرّ 
    continuum = الُمُّصحِ
```

```
        continuum hypothesis = فَرْنِّةُ، المُتُصِل
        contour = كفاف
        contour integral = 'rكامُل" كِفافِي"
        contour line = خَطٌ كِفافِيّ"
        contracted (adj) = مُقَّص
contracted curvature tensor = مُوتِّرُ تَقوسٌ"
        contracted tensor = مُوتِّرٌ مُقَّصّص
            contraction = تُقْ\ص
        contraction mapping = تُطبيقٌ مُقَّصص
contraction of a tensor = تَقْلْصُ
        contradiction = تُناقُض (خُلْف)
        contradiction law = قانونُ التّناقُض (قانونُ الخُلْف)
        contradictory (adj) = مُمتناقِض
```



```
            contrapositive = مُكافِئُعْعَسْيّ"
```



```
            control = تَحَكُّم
        control chart = مُخَطّْطُ
        شَرْطُ تَحَكُم
            control group = مَجْموعةُ تَحَكُمٌم
```



```
            control variable = مُتْيُرُ، تَحَكُم
        convergence = تَقارُب
تَقعارُبٌ في القياس
convergent improper integral = =َكُمُلٌ مُعْت)
```


$$
\begin{aligned}
& \text { convergent net = شَبَكةٌ مُتَقاربة } \\
& \text { مُتْتالِيةٌ مُتقاربة = convergent sequence } \\
& \text { convergent series = مُتسَسْسِلةٌ مُتَقاربة مُتاربة } \\
& \text { converse }=\text { عَكْس } \\
& \text { conversion factor = عامِلُ تَحْوْيل } \\
& \text { conversion period = دوْرةُ التَّحْوِيل } \\
& \text { conversion ratio }=\text { نِسْبُةُ تَحْوِيل } \\
& \text { conversion tables }=\text { جَداولُ تَحْوْ يلريل } \\
& \text { زاويةٌ مُحَحَّبة } \\
& \text { convex body = جرْمْ مُحَحَّبُ } \\
& \text { convex combination = تَرْكيبٌ مُحَدَّبُ } \\
& \text { مُنْحِن مُحَدَّبِ } \\
& \text { convex function = دالّْةٌ مُحَدَّبَّبُ } \\
& \text { convex hull = غِلافقٌ مُحَدَّب } \\
& \text { convex linear combination = تَرْكيبٌ خَطِّيٌ مُحَدَّبُ مُحِّبِ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { convex polygon = مَضَلَّعٌ مُحَدَّبُبِّبُ مُحْبِ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { convex programming = بَرْمَجْةٌ مُحَحَّبَّة } \\
& \text { رُباعِيُّ زَوايا مُحَحَّبَ } \\
& \text { convex sequence = مُتتالِيةٌ مُحَدَّبَّةِ } \\
& \text { convex set = مَجْموعةٌ مُحَدَّبَّة } \\
& \text { convex span = بَسْطٌةٌ مُحَدَّبَة } \\
& \text { convex surface = سَطْحٌ مُحَدَّبَ } \\
& \text { convolution = تَلافٌ } \\
& \text { convolution family }=\text { جَماعةُ تَلافقِّ } \\
& \text { convolution of two functions = تَلافُقُ دالَّتْنَنُ } \\
& \text { convolution of two power series = تَلانُُ مُتَسَلْسِلَتَيْ قُؤى } \\
& \text { convolution rule }=\text { قاعِدةُ التُّالافّى }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مُبرْهَنَةُ التَّلافقّ } \\
& \text { coordinate axes = مَحاورُ إِحْداتِيَّات } \\
& \text { coordinate basis }=\text { قاعِدُة إحْدا إِيَّات } \\
& \text { coordinate change = تَيْيرٌ إِحْداثِيّ (تَغْيرُ الإِحْداثِيَّات) } \\
& \text { coordinate function = دالْةٌ إحْدَاثِيَّة } \\
& \text { coordinate geometry = هَندَسةُ الإِحْداثِيَّات } \\
& \text { coordinate plane = مُسْتُوٍ إحْدَاثِيّ } \\
& \text { coordinate system = منظومةٌ إِحْداثِيَّة } \\
& \text { coordinate transformation = تَحْ يلٌ إِحْداثِيَّ (تَحْوِيلُ الإحْداثِيَّات) } \\
& \text { coordinate trihedral }=\text { ثُلاثيُّيُ وُجوهٍ إِحْداثِيّي } \\
& \text { coordinates }=\text { إحداثِثَّكَات } \\
& \text { coplanar (adj) = في مُسْتُوٍ واحِد } \\
& \text { coplanar vectors =مُتَجهاتٌ في مُسْتُوٍ واحِد } \\
& \text { coprime (adj) = أورَّلِيَّانِ فيما بَيْنِهِما } \\
& \text { copunctal planes = مُسْتَوِياتٌ ذاتُ نُقْطةٍ مُشْتْرَكَة } \\
& \text { core = نَواة } \\
& \text { Cornu's spiral }=\text { حَلَزونُ كورزنو } \\
& \text { corollary }=\text { نُتيجة (لازمة) } \\
& \text { correction }=\text { تَصْحيح } \\
& \text { correlation = ارتِباط } \\
& \text { correlation coefficient = مُعامِلُ ارْتباط } \\
& \text { correlation curve }=\text { مُنْحَني ارْتِباط } \\
& \text { correlation matrix = مَصْفوفةُ ارْتباط } \\
& \text { correlation ratio }=\text { نسْبُةُ الارْتباط } \\
& \text { correlation table }=\text { جَدْوَلُ ارْتبناط } \\
& \text { correlogram = مُخَطَّطُ رارْتباط رُنباط } \\
& \text { correspondence }=\text { تَقابُل } \\
& \text { زاوريَتانٍ مُتُقابِلَتان } \\
& \text { corresponding sides = ضِلْعانِ مُتُقابِالان } \\
& \text { cosecant }=\text { قاطِعُ التَّمام }
\end{aligned}
$$

$$
\begin{aligned}
& \text { coset = مَجْموعةٌ مُصاحِبة (مَجْموعةٌ مُشار كة) } \\
& \text { cosine = جَيْبُ التَّمام } \\
& \text { cosine law = قانونُ جَيْب التَّمام } \\
& \text { مُتَسَلْسِلةُ جَيْبِ التَّمام } \\
& \text { cotangent = ظِلُ التَّمام } \\
& \text { coterminal angles = زَوايا ذاتُ ضِلْعَنِ مُشْتُرَكَيْن } \\
& \text { count (v) = يُعُدّ } \\
& \text { countability axioms = مَوْضوعَتا العَدورِيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { countably compact set = مَجْموعةٌ مُترَاصَّةُّ عَدورِيَّا }
\end{aligned}
$$

$$
\begin{aligned}
& \text { وَسَطٌ مُخالِفُ التُّو انُفِيَّة } \\
& \text { counter-image }=\text { صورةٌ عَكْسِيَّة } \\
& \text { قِياسُ العَدّ } \\
& \text { counting numbers = أعدادُ العَدّ } \\
& \text { covariance }=\text { تَغايُر (تَايُينٌ مُشْتُرَكَ) } \\
& \text { covariance analysis = تَحْليلُ التَّغايُرُ (تَحْليلُ التَّايُن المُشْتُرَكَ) (5) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { covariant functor = دالٌ مُو افِقُ" للتَّغُّرُ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { covariant tensor = مُوتِّرٌ مُو افِقَّ للتَّفَيُرُ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { covector = مُتَّجهٌ مُقابِلٌ (مَتَّجْهُ مُشارِكَّ) } \\
& \text { cover }=\text { تَغْطِية } \\
& \text { cover of a set = تَغْطِيُّ مَجْموعة } \\
& \text { covering = تَغْطِية } \\
& \text { مُتَمِّمُ الجَيْبِ إلى الواحِد } \\
& \text { Cramer's rule = قاعِدةُ كْرامر امِ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Cramer-Rao inequality =مُتراجحةُ كُرامرَ -راو حور } \\
& \text { critical function = دالَّةٌ حَرجة } \\
& \text { critical point }=\text { نُقْةٌ حَرِجة حرجة } \\
& \text { critical ratio = نسْبٌة حَرجة حِّ } \\
& \text { critical value }=\text { قَيمةٌ حَرِجة حِّة } \\
& \text { cross curve }=\text { مُنْحَنٍ تَصالُبِيّ } \\
& \text { cross product }=\text { جُداء تُصصالُبيّ } \\
& \text { cross ratio = نسْبْةُ تَصالُبيَّة } \\
& \text { cross section }=\text { مَقْطَعٌ عَرْضِيّ } \\
& \text { cross-cap = قُبُعةٌ مُتْصالِبة عِّبة } \\
& \text { cross-correlation = ارتِباطٌ تَصالُبيّ } \\
& \text { cross-cut = قَطْعٌ مُسْتَعْرض } \\
& \text { crossed quadrangle = رُباعِيُّ زَوايا تَقاطُعِيّ } \\
& \text { cross-multiplication = ضَرْبٌ تَصالُبيّ } \\
& \text { Crout reduction }=\text { اختِز الُ كْراوت } \\
& \text { مُمْنحَنٍ صَليبيّ } \\
& \text { crunode = عُقْدةٌ مُتصصالِبة (نُقْطٌةٍ مُصْاعَفَة) } \\
& \text { cubage }= \\
& \text { حَجْم } \\
& \text { cubature }= \\
& \text { تَكْعْبِ } \\
& \text { cube = مُحَعَّبِبِ } \\
& \text { cube root = جَذْرٌ تَكْعِبيّيّ } \\
& \text { cubic curve }=\text { مُنْحَنِ تَكْعِيبيّ } \\
& \text { cubic determinant }=\text { مُحَدِّدةً تَكْعْيبَّة } \\
& \text { cubic equation = مُعادَلْةٍ تَكْعيبيَّة } \\
& \text { cubic polynomial =حُدو دِيَّةٌ تَكْمِيبَّةُ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { cubic surd }=\text { جَذْرٌ تَكْعِيبِيُّ أصَمَّ } \\
& \text { cubical graph = بَيانُ مُكَعَب } \\
& \text { cubical parabola }=\text { قَطْعٌ مُكافِئُ َكَعْيبيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { cuboctahedron (cubooctahedron) = مَقْطوعُ الُمكَعَبِ الثُّمانيّيّ } \\
& \text { cuboid = مُتوازي مُسْنطيلات } \\
& \text { Cullen numbers = أعدادُ كولِن } \\
& \text { cumulants }=\text { مُراكِمات } \\
& \text { cumulative distribution function = دالَّةُ تَوْمِعِ تَراكُمِيّ } \\
& \text { cumulative error =خَطْأٌ تَراكُمِيّ } \\
& \text { cumulative frequency = تَرَدُدٌ تَرا اكُمِيّ } \\
& \text { cumulative frequency polygon =مُضَلّْعُ تَرَدُدٍ تَراكُمِيّ } \\
& \text { cup product = جُداءٌ كَأْسِيّ } \\
& \text { curl = دَوَران } \\
& \text { curtate cycloid = دُحْروجٌ مُتقاصرِ دُرِّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { curvature = تَقُوس } \\
& \text { curvature tensor = مُوتِّرُ تَقَوُسُ } \\
& \text { curvature vector = مُتَجُ، التَّقَوُس } \\
& \text { مُنْحَنٍ } \\
& \text { curve fitting = مُلاُكَمٌ بِمُنْحَنٍ } \\
& \text { curved surface }=\text { سَطْحٌ مُنْحَنٍ } \\
& \text { curvilinear coordinates = إحداثِيَّاتٌ مُنْحَنَية }
\end{aligned}
$$

$$
\begin{aligned}
& \text { curvilinear regression }=\text { انْكِفاءٌ مُنْحَنٍ } \\
& \text { curvilinear solid = مُجَسَّمٌ مُنْحَنٍ } \\
& \text { curvilinear transformation =تَحْ يلٌ إِحْداثِيٌّ مُنْحَنٍ } \\
& \text { curvilinear trend = نَزْعٌة مُنْحَنية } \\
& \text { cusp }=\text { قُرْنة } \\
& \text { cusp of the first kind = قُرْنةٌ من النَّوْع الأوَّل } \\
& \text { cusp of the second kind = قُرْنةٌ من النَّوْعُ الثَّانين } \\
& \text { مُمْحَنٍ تَكْعِيبِيٍ قُرْنِيّ } \\
& \text { cuspidal locus = مَحَلِّ هَنْدَسِيٌّ قُرْنِيّ } \\
& \text { cut }=\text { قَطْع }
\end{aligned}
$$

$$
\begin{aligned}
& \text { cut line }=\text { خَطُّ قَطْع } \\
& \text { cut point }=\text { نُقْةُ قَطْع } \\
& \text { cycle }=\text { دورْ } \\
& \text { cyclic curve = مُنحَنٍ دَوْرِيّ } \\
& \text { cyclic extension =تمْديلٌ دَوْرِيّ } \\
& \text { cyclic graph =بَيانٌ دَوْرِيّ } \\
& \text { cyclic group }=\text { زُمْرةٌ دَوْرِيَّة } \\
& \text { cyclic identity }=\text { مُتَطابقةٌ دَوْرِيَّة } \\
& \text { cyclic left module }=\text { مو دولٌ يَساريٌّ دَوْريّ } \\
& \text { cyclic permutation =تَبْديلِ دَوْرِيّ } \\
& \text { cyclic polygon = مُضَلَّعٌ دائرِيّ } \\
& \text { cyclic quadrilateral }= \\
& \text { رُباعِيٌّ دائرِيّ } \\
& \text { cycloid = دُحْورج (سيكلوئيد) } \\
& \text { cyclomatic number }=\text { عَدَدٌ دُوَيْرِانيّ } \\
& \text { cyclosymmetric function = دالَّةٌ مُتناظِرَّةٌ دَوْرِيَّا } \\
& \text { مُعْادَلةٌ دُوَيْر انيَّة } \\
& \text { cyclotomic field }=\text { حَقْلٌ دُوَيْرانيّ } \\
& \text { cyclotomic functions = دَوالُّ دُوَيْر انيَّة } \\
& \text { cyclotomic integer }=\text { عَدَدٌ صَحيحٌ دُوَيْر انيّ } \\
& \text { cyclotomy = الدُّوَيْرْ انيَّة } \\
& \text { cylinder = أُسطُوانة } \\
& \text { cylinder function }=\text { دالَّةُ أُسْطُوانة } \\
& \text { cylindrical coordinates }=\text { إحداثِيَّاتٌ أُسْطُو انيَّة } \\
& \text { cylindrical function }=\text { دالَّهُ أُسْطُو انِّيَّة } \\
& \text { لَوْلَبْ } \\
& \text { cylindrical map = تَطْبيقٌ أُسْطُوانيّ } \\
& \text { cylindrical surface }=\text { سَطْحٌ أُسْطُوُ انيّ } \\
& \text { cylindroid =مُجَسَّمٌ شِبْهُ أُسْطُوُرانيّ أُمْيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { D } \\
& \text { d'Alembertian =مُؤُتِّرُ دالمبير } \\
& \text { damped oscillation = اهْتِز ازُ مُتَخامِد } \\
& \text { كُرةُ دانْدولان } \\
& \text { Darboux integral = تَكامُلُ داربو } \\
& \text { Darboux property = خاصِيَّةُ داربْو } \\
& \text { Darboux sums = مَجْموعا دارْبو } \\
& \text { Darboux theorem =مُبرْهَنَهُ دارْبو } \\
& \text { Darboux-Riemann integral = تَكامُلُ دارْبو -ريمان } \\
& \text { data reduction = اختزالُ المُعطَيات } \\
& \text { de Gua's rule }=\text { قاعدِةُ دوغْوا } \\
& \text { De Moivre's formulae = دَساتيرُ (صِيَغُ) دومو افر } \\
& \text { De Moivre's theorem =مَبرْهَنُةُ دومْوَاَقُر } \\
& \text { De Morgan's laws = قانونا دومورْغان } \\
& \text { De Morgan's test = اختِبارُ دومورْغان } \\
& \text { decade }=\text { عَقْد } \\
& \text { decagon = عُشارِيّ } \\
& \text { decahedron = مُتعَدِّدُد وُجوهٍ عُشارِيّ عُريّ } \\
& \text { decile }=\text { عُشَيْرْ } \\
& \text { decimal }=\text { عَشْرِيّ } \\
& \text { decimal fraction =كَرْ عَشْرِيّ } \\
& \text { decimal notation = تَدوْيٌ عَشْرِيّ } \\
& \text { decimal number }=\text { عَدَدٌ عَشْرُريّ } \\
& \text { decimal number system = نظامُ العَدِّ العَشْرْ عِيّ } \\
& \text { decimal place = مَنْ للٌّ عَنْرْ ِيَّة (حانةٌ عَشْرِيَّة) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { decimal system = نظامُ العَدِّ الحَنْرْ } \\
& \text { decision analysis =تَحْليلُ القَراراتِ } \\
& \text { decision theory = نظَرِيَّةُ القَرَارات } \\
& \text { decision tree }=\text { شَجَرُُ القَراراتر اتُرات }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مُتْفيِّراتُ القَرارات } \\
& \text { declination }=\text { انْحِدار } \\
& \text { decomino = دومينو عُشارِيّ } \\
& \text { decomposition }=\text { تَفْريق، تَحْليل } \\
& \text { decreasing function = دالَّةٌ مُتناقِصة مُرلِّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { decrement = تَنُقص } \\
& \text { Dedekind cut = مَقْطُعُ ديديكِند } \\
& \text { Dedekind ring = حَلَقةُ ديديكِنْد } \\
& \text { Dedekind test = اختِبارُ ديديكِنْد } \\
& \text { deductive method = الطُّريقُُ الاسْنِنْناجيَّة } \\
& \text { defect }=\text { عَيْبٌ (خَلَل) } \\
& \text { defective equation = مُعادَلْةٌ مُخْتَلْةِ } \\
& \text { defective number = عَدَدٌ قاصِر (عَدَدٌ ناقص) } \\
& \text { deficiency index = دَليلُ نَقْص } \\
& \text { deficient number = عَدَدٌ ناقِص } \\
& \text { definite integral = تَكامُلٌ مُحَدَّدّد } \\
& \text { definite Riemann integral = كَكامُلُ ريمان المُحَدَّد } \\
& \text { definition }=\text { تَعْرِيف } \\
& \text { deformation = تَشْوْ يه } \\
& \text { degenerate (adj) = مُترَدِّ } \\
& \text { degenerate conic = قَطْعٌ مَخْروطِيٌ مُترَدِّ } \\
& \text { degenerate quadric }=\text { سَطْحٌ تَرْبيعيٌِ مُترَدِّدِّ } \\
& \text { degenerate simplex =مُبَسَّطُ مُتَرَدِّ } \\
& \text { degree = دَرَجة } \\
& \text { degree of degeneracy = دَرَجةُ التُرَّرِّي } \\
& \text { degree of freedom = دَرَجُة الحُريِّة } \\
& \text { Delambre analogies = تماثُثاتُ ديلامْبر } \\
& \text { deleted neighborhood =جوارٌ مَحْذوف (مَتْقوبٌ) } \\
& \text { Delian (altar) problem = مَسْأَلُُ (مَذْبُحِ) ديلوسِ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { delta }=\text { رِّنتا } \\
& \text { delta function = دالَّةُ دِلْنا }
\end{aligned}
$$

$$
\begin{aligned}
& \text { deltoid = دِلْناويّ } \\
& \text { denominator }=\text { مَقام } \\
& \text { dense matrix = مَصْفو فةٌ كَثيفة } \\
& \text { dense subset = مَجْموعةٌ جُزْئِيَّةٌ كَثيفة كَئِّة } \\
& \text { dense-in-itself set = مَجْموعةٌ كَثيفةٌ ذاتِيَّا كِّا } \\
& \text { density = كثافة } \\
& \text { density function = دالَّةُ كَثافة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { denumerable set = مَجْموعةٌ عَدودة (مَجْموعةٌ قابلةٌ للعَدّ) } \\
& \text { dependence = تَبَيِّة (عَلَمُمُ اسْْتِقْلالِيَّة) } \\
& \text { dependent equation = مُعادَلٌٌْ تابعة (مُعَادَلْةٌ غَيْرُ مُسْتَقِلَّة) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { depressed equation = مُعادَلٌّةٍ مُخَفَّضة } \\
& \text { derangement = تَبْديل" فِعْلِيّ } \\
& \text { derivation }=\text { اشتِقاق } \\
& \text { derivative }=\text { مُشْتْقَقِّ } \\
& \text { derived curve }=\text { مُنْحَن مُشْتْقَّ } \\
& \text { derived equation = مُعادَلَّةٌ مُشْتْقَّةُ } \\
& \text { derived set = مَجْموعةٌ مُشْنَقَّةُ } \\
& \text { derived subgroup = زُمْرةٌ جُزْرَئَّةٌ مُشْتُقَّةُ } \\
& \text { derogatory matrix = مَصْفو فةٌ مُترَدَيّية } \\
& \text { Desargues theorem =مُبرْهَنَةُ ديزارك } \\
& \text { Desarguesian plane = مُستْوي ديزارْك } \\
& \text { Descartes' rule of signs = قاعِدةُ ديكارْت في الإشارات ديز } \\
& \text { descending chain condition =شَرْطُ السِّنْسلةِ النَّزَلة } \\
& \text { descending sequence = مُتْتالِيةٌ مُتنَاقِصة (مُتْتَالِيةٌ نازِلةً) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { descriptive geometry = المَنْدَسُة الوَصْفِيَّة } \\
& \text { descriptive statistics = الإحْصاءُ الوَصْفِيّ } \\
& \text { det (determinant) = مُحَدِّدة } \\
& \text { developable (adj) = نَشور (قابلٌ للنَّشْرْ (} \\
& \text { developable surface = سَطْحٌ نَشور (سَطْحٌ قابل" للنَّشْرْ) } \\
& \text { deviation }=\text { انْحِرِ } \\
& \text { devil on two sticks =شَيْطانٌ على عَصَوَيْن } \\
& \text { devil's curve = مُنْحَني الشَّيَّطان }
\end{aligned}
$$

$$
\begin{aligned}
& \text { dextrorsum = مُنْحَنٍ يَمينِيُّ الالْنِفاف } \\
& \text { diagonal }=\text { قُطْرُ } \\
& \text { diagonal entry = مَدْخَلْ قُطْريّ } \\
& \text { diagonal Latin square = مُربَّعٌ لاتينيٌّ قُطْرِيّ } \\
& \text { diagonal matrix }=\text { مَصْفو فةٌ قُطْرِيَّة } \\
& \text { diagonalize (v) = يْقُرُ } \\
& \text { diagonally dominant matrix = مَصْفوفةٌ مُهَيْمِنُة قُطْرَيًّا } \\
& \text { diagram }=\text { مُخَطُّطُ } \\
& \text { diameter }=\text { قُطر } \\
& \text { مُمْحَنِ قُطْرِيّ } \\
& \text { diametral plane = مُستْوَ قُطْرِيّ } \\
& \text { diametral surface = سَطْحٌ قُطْرِيّ } \\
& \text { diamond }=\text { مُعِيّن } \\
& \text { تَنْصيفٌ (تَقْسيمٌ ثُنائيّ) } \\
& \text { dicycle = دَوْرَّ مُوَجَّهة } \\
& \text { Dido's problem = مَسْألةُ ديدو مؤُون } \\
& \text { diffeomorphic sets = مَجْموعاتٌ مُتْفاكِلة } \\
& \text { diffeomorphism = تَفاكُل } \\
& \text { difference }=\text { فَرْق } \\
& \text { difference engine = آلةٌ فُروِِئّة } \\
& \text { difference equation = مُعادَلَّةٍ فُروِقيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مُؤَتّْرْ فُروقِيّ } \\
& \text { difference quotient }=\text { خارِجُ قِسْمٍةٍ فُروِِيَّة } \\
& \text { difference sequence = مُتتالِيةٌ فُروِقَّةَ } \\
& \text { differences of the first order =فُروقي من المَرْتَبِّ الأُوْلَى } \\
& \text { differences of the second order = فُروقٌ من المَرْتَبِةِ الثَّانية } \\
& \text { differentiable (adj) = فَضول (قابلٌ للمُماضَلة) } \\
& \text { differentiable atlas = أُلْسَ فَضول (أطلْسُ قابِلُ للمُفاضَلة) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { differential (} n, a d j \text {) = تَفاضُل، تَفاضُلِيّ } \\
& \text { differential atlas = أُلَسُ تَفاضُكِيّ } \\
& \text { differential calculus = حُسبْانُ التَّفُنُل } \\
& \text { differential coefficient =مُعامِلْ تَفَاضُلِيّ } \\
& \text { differential equation = مُعادَلُّةُ تَفاضُلِيَّة كِيَّ } \\
& \text { differential form = صيغةٌ تَفاضُلِيلِّة } \\
& \text { differential geometry = المْنَدَسُُ التَّفاضُلْيَّةَ } \\
& \text { differential manifold = مُتْنَوِّةٌ تَفاضُلِيلِّة } \\
& \text { مُؤَتِّرْ تَفاضُكِي" } \\
& \text { differential topology = الطبولوجيا التُّفاضُلُِيَّة } \\
& \text { differentiate (v) = يَشْتْقَ (يُفاضِل) } \\
& \text { differentiation = مُفاضَلة } \\
& \text { digamma function = رالّْةُ ثُنائِيَّةُ الغامات } \\
& \text { digit }=\text { رَقْم } \\
& \text { digit place = خانةُ رَقْم (مَنْزلةُ رَقْم) } \\
& \text { digit position }=\text { مَوْقِعُع رَقْمْ } \\
& \text { digital (adj) }=\text { رَقْمِيّ } \\
& \text { digital computer =حوبّ رَقْمِيّ } \\
& \text { digraph = بَيانٌ مُوَجَّهُ } \\
& \text { dihedral = ثُنائيُّ الوَجْهُ } \\
& \text { dihedral angle = زاويةٌ ثُنائِيَّةُ كوَجْهُ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { زَمُرْةُ ثُنُئِيَةُ الوَجْهُ } \\
& \text { dihedron =ُنائِيُّ الوَجْه } \\
& \text { dilatation }=\text { تَمْديد } \\
& \text { dilogarithm = لُغارتْمٌ ثُنائيّيّ } \\
& \text { مُبرَهْنَةُ ديلْويرْت } \\
& \text { dimension }=\text { بُعْد } \\
& \text { Dini condition = شَرْطُ دِيني } \\
& \text { Dini theorem = مُبرْهَنَةُ دِيني دِيني } \\
& \text { dioctahedral = سِتَّ عَشْرِيِّ الوُجوه } \\
& \text { Diophantine analysis = تَحْليلُ دِيو فُنْتِيّ يُّ } \\
& \text { Diophantine equation =مُعَدَلةٌ دِيو فَنْنِيَّة } \\
& \text { dipath = مَسارٌ مُوَجَّه } \\
& \text { Dirac delta function = دالَّةُ دِلْنا لديراكو } \\
& \text { Dirac spinor }=\text { مُدَوَمُ ديراك } \\
& \text { direct product }=\text { جُداءٌ مُباشُ } \\
& \text { direct proof = بُرْهانٌ مُباشَرُ مُرْ } \\
& \text { تَناسُبٌ طَرْدِيّ } \\
& \text { direct sum = مَجْموعٌ مُباشَرَ طِّ } \\
& \text { direct variation }=\text { تَغَيُرْ طَرْدِيّ } \\
& \text { directed angle = زاويةٌ مُوَجَّهُة } \\
& \text { directed cycle = دَوْرَةٌ مُوْجَّهة } \\
& \text { directed graph = بَيانٌ مُوَجَّهُ } \\
& \text { directed line = مُسْتَيمٌ مُوَجَّهُ مِّهِّ } \\
& \text { directed network = شَبَكةٌ مُوْجَّهُة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { directed path = مَسارٌ مُوَجَّهُ مُّهِّهُ } \\
& \text { directed ratio = نِسْبٌة مُوْجَّهُة } \\
& \text { directed set = مَجْموعةٌ مُوَجَّهُة } \\
& \text { directed system = نظامٌ مُوَجَّهُ } \\
& \text { direction angles = زَوايا الاتّجاه }
\end{aligned}
$$

$$
\begin{aligned}
& \text { direction cosines }=\text { جُيوبُ تَمامِ الاتِّجاه } \\
& \text { direction field = حَقْلُ الاتِّجاه } \\
& \text { direction numbers = أعدادُ الاتِّجاه } \\
& \text { direction ratios =نَبُُ الاتِّجاه } \\
& \text { directional derivative = مُشْتُقِّ اتِّجاهِيَّ المِّ } \\
& \text { directly congruent figures =شَكْلانِ مُتُطابقانِ مُباشَرة } \\
& \text { directrix }=\text { دَليلر } \\
& \text { Dirichlet conditions =شُروطُ ديريخليه }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Dirichlet problem =مَسْألةُ ديريْنليه ويْلُ } \\
& \text { Dirichlet product }=\text { جُداءُ ديريخْليه } \\
& \text { Dirichlet series = مُتَسَلْسلةُ ديريْنليه } \\
& \text { Dirichlet test for convergence }=\text { اخْتِبارُ ديريُخليه في التَّقارُب } \\
& \text { Dirichlet theorem =مُبَهَنَةُ ديريخلْيهن } \\
& \text { Dirichlet's kernel = نَواةُ ديريخْليه } \\
& \text { disc }=\text { قُرْص } \\
& \text { disconnected set = مَجْموعةٌ غَيْرُ مُترَابطَة } \\
& \text { discontinuity }=\text { انْقِطا } \\
& \text { discontinuous function = دالٌٌْ مُنْقَطِعِة (غَيْرُ مُسْتمِرَّة) } \\
& \text { discrete Fourier transform = مُحَوِّلُ فورْييه المُتَقَطِّعُ } \\
& \text { discrete mathematics = الرِّاضيَّيَّاتُ المُتَقَطِّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { discrete set = مَجْموعةٌ مُتْقَطِّعةُ } \\
& \text { discrete topology = الطبولوجيا المُتقَطِّعة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { discretization }=\text { تَقْطيع } \\
& \text { discretization error = خَطْاًٌ تَطْيعِيّ } \\
& \text { discriminant }=\text { مُمِيِّ } \\
& \text { disintegration of measure }=\text { تَنْيتُ قِياس } \\
& \text { disjoint sets = مَجْموعاتٌ مُنْفَصِلة }
\end{aligned}
$$

disjunction of propositions = فَصْلُ قَضِيَّيَنْن
disk $=$ قُرْص
disk method = طَيقةُ القُرْص صرص
dispersion $=$ تَشُتُّتص
dispersion index = دَليلُ التَّشُتُت
displacement $=$ إزاحة
displacement operator $=$ مُؤترّرُ إزاحة
dissect (v)
dissimilar terms =حُدودٌ غَيْرُ مُتَشابهة
distance $=$ مَسافة
distance function = دالَّةُ مَسافة
distribution $=$ تَوْزيع
distribution curve $=$ مُنْحَن تَوْزيع
distribution function = دالْةُ تَوْيع
distributive law $=$ قانونٌ تَوْزيعيّيّ
diverge to zero (v) = يَتَباعَدُ إلى الصصّفْ
divergence $=$ تَباعُد
divergence theorem =مُبرْهَنُةُ التَّباعُد
divergent integral = تَكامُلْ مُتْباعِد
divergent sequence = مُتتالِيُّةُ مُتباعِدة
divergent series = مُتَسَلْسلةٌ مُتُباعِدة
divide (v) $=$ يَقْسم
dividend = مَقْسوم
divine proportion = تَناسُبٌ سِحْريّ
divisible (adj) = قَسومٌ (قابِلٌ للقِسْمُة)
division $=$ قِسْمة
division algebra $=$ جَبْرُ قِسْمة
division algorithm =خُو ارزمْيِّةُ قِسْمْة قِمْة
division of a segment = تَقْسيمُ قِطْعٍةٍ مُسْتَقيمة
division ring =حَلَقُُ قِسْمة

$$
\begin{aligned}
& \text { division sign }=\text { إشارةُ القِسمَة } \\
& \text { divisor = مَقْسومٌ عَلَيْه (قاسِم) } \\
& \text { divisor function = دالَّةُ القاسِم (دالَّةُ عَدَدِ القَواسِم) } \\
& \text { divisors of zero }=\text { قَاسِمُ للصِّفْ } \\
& \text { Dobinski's equality =مُساواةُ دوبينْسْكي } \\
& \text { dodecagon }=\text { مُضَلَّعٌ اثْنا عَشَرِيّ } \\
& \text { dodecahedron = اثنا عَشَرِيِّ الوُجوه } \\
& \text { dodecomino }=\text { دومينو اثْنا عَشَرَيّ انّريّ } \\
& \text { domain = ساحة، نطاق، مُنطِقة، مُنْطَلَق } \\
& \text { domain of dependence }=\text { ساحةُ التَّبَعِيَّة (ساحةُ الاعْتِماد) } \\
& \text { dominant function }=\text { دالَّلُّ مُهُيْمِنة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { dominated }(a d j)=\text { مَرْجوحٌ (مُهَيْمَنٌ عَلَيْه) } \\
& \text { مَجْمْوعةُ وُصْلاتٍ راجِحة (مُهَيْمِنة) } \\
& \text { dominating series =مُتسَلْسِلةٌ راجْحة (مُهَيْمِنة) } \\
& \text { مَجَمْوعةٌ رؤوس راجِحة (مُهَيْمِنة) } \\
& \text { dot product }=\text { جُداءٌ دانخلِيّ (جُداءٌ سُلَّمِيّ) } \\
& \text { double angle formula = دَساتيرُ ضِعْفِ الزَّاوِية } \\
& \text { double angle formula }=\text { قاعِدةُ (دَساتير) ضِعْف الزَّاوِية } \\
& \text { double cusp = قُرْنٌ مُضُاعَفة } \\
& \text { double integral = تَكامُلِّ ثُنائِيّ } \\
& \text { double law of the mean = القانونُ الثُّنائِيُ لِلْوَسَط } \\
& \text { double } \log \text { paper }=\text { وَرَقةُ رَسْمٍ لُفارِتْمِيَّةٌ مُزْدْرِ جِةُ } \\
& \text { double point = نُقْطةٌ مُضاعَفة } \\
& \text { double root =جَذْرٌ ثُنائِيٌ (جَذْرٌ مُضاعَفٌ مَرَّتَنْ) } \\
& \text { double ruled surface }=\text { سَطْحٌ مُسَطَّرٌ ثُنائيّيّ } \\
& \text { مُتَسَلْسِلةٌ مُضاعَفة (ثُنائِيَّة) } \\
& \text { double tangent =مُماسٌّ ثُنائِيّ } \\
& \text { doubly even number =عَدَدٌ مُضاعَفُ الزَّو جِيَّة } \\
& \text { دالَّةٌ ثُنائِيَّةُ الدَّوْرِيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { doubly stochastic matrix = مَصْفو فٌٌُ مُضاعَفُةُ العَشْوْ ائِيَّة } \\
& \text { dual basis = قَاعِدُةٌ ثِنْوَيَّة } \\
& \text { dual elements = عُنصُرَاْنِ ثِنْوَّيَّان } \\
& \text { dual graph = بَيَّنٌ ثِنْوِيّ } \\
& \text { dual group = زُمْرة ثِنْوِيَّة } \\
& \text { dual isomorphism = تَمَاكُلْ ثِنْوِيّ } \\
& \text { dual norm = نَظُيمٌ ثِنْوِيّ } \\
& \text { dual operation = عَمَلِيَّةٌ ثِنْوَيَّةُ } \\
& \text { dual space }=\text { فَضَاءُ ثِنْوِيّ } \\
& \text { dual tensor = مُوتِّرٌ ثِثْوِيّ } \\
& \text { dual theorem =مُبْهَنُةُ الثِّنِّيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { duality }=\text { تِنْوِّيَّة } \\
& \text { duality principle = مَبْدُأُثنِّنُيَّة } \\
& \text { Duhamel's theorem =مُبْهَنَةُ دوهاميل } \\
& \text { dummy suffix }=\text { لاحِقةٌ خَرْساء } \\
& \text { dummy variable = مُتَفيِّر" أَخْرَسْسِ } \\
& \text { duodecimal number = عَدَدٌ اثْنا عَشَرِيّ } \\
& \text { Dupin's theorem =مُرْهَنَةُ دویان } \\
& \text { duplication of the cube = مُضاعَفُةُ المُكَعَب } \\
& \text { مُنْحَنِ ديورَر الصَّدَفِيّيّ } \\
& \text { dyad = ثُناء } \\
& \text { dyadic expansion =نَرْ ثُناويّ } \\
& \text { dyadic number system = نظامُ عَدِّ ثُناويّ } \\
& \text { dyadic rational =عَدُدٌ مُنَطْقَّ ثُمُوِيّ } \\
& \text { dyadic vector }=\text { مُتَّجْهٌ ثُناوِيّ } \\
& \text { dynamic programming = بَرْمَجةٌ تَحْرِ يكِيَّة (بَرْمَجُةٌ دينَّامِيَّة) } \\
& \text { dynamical/dynamic system =نظامٌ تَحْرِيكِيٌ (نظامٌ دينامِيّ) } \\
& \text { dynamics = علم التَّحْرِيك (الدِّيناميك) (دين) } \\
& \text { dyne = دايْنْ (دينة) }
\end{aligned}
$$

E

eccentric (adj) =مُخْتَلِفُ المُرْكز
زاويةُ التَّباعُدِ المَرْكَزِيّ
eccentric circles = دائرَّا التَّبَاعُد المَرْكَزِيّ
eccentricity = التَّبُعُلُ المَرْكَزِيّ
ecenter = مَرْكَزُ دائِرةٍ خارِجيَّةَ
echelon matrix = مَصْفوفةٌ دَرَجيَّة
ecliptic $=$ دائرةُ الكُسوف
edge = حافة، ضِلْع، حَرْف، وُصْلة، قَوْس
edge cover = تَغْطِيةٌ بالوُصْلاتِ

edge independence number =عِدَّةُ اسمْتِقْلال الوُصْاتوات
edge number = عَدَدُ الوُصْلات الوَاء
edge of regression =حَرْفُ الانْكِفاء (التَّراجُع)
edge set = مَجْموعةُ وُصْلات

effective procedure = إجراءٌ فَعَّال
effectively computable function = دالَّةٍ حَسُوبةٌ بِفَّالِيَّة
efficiency = فَعَالِيَّة
efficient estimator $=$ مُقَدِرّر فَعَّالِ
Egoroff's theorem =مُرْهَنُة إيغوروف
Egyptian fraction =كسْرٌ مِصْرِيّ
Egyptian numerals = الأرقامُ المِرِيَّة
eigenfunction = دالّْةٌ ذاتِيَّة
eigenmatrix = مُصْفوفةُ قِيَمِ ذاتِيَّة
eigenspace $=$ فَضاءُ قِيَمِ ذاتِيَّة
eigenvalue = قيمةٌ ذاتِيَّة
eigenvalues equation = مُعادَلُةُ القِيَمِ الذَاتِيَّة
eigenvalues problem = مَسْألةُ القِيم الذَاتِيَّة

$$
\begin{aligned}
& \text { eigenvector = مُتَّجهٌ ذاتِيّ } \\
& \text { eight curve = مُنحَيْ الثّمانية } \\
& \text { eight surface = سَطْحُ الثّنمانية } \\
& \text { Einstein space = فَضاءُ أينشتاين } \\
& \text { element }=\text { عُنصُر } \\
& \text { elementary column operation = عَمَلِّةٌ عَمو دِيَّةٌ ابْتِدائِيَّةُ } \\
& \text { elementary divisor = قاسِمٌ إْتِدْائيّيّ } \\
& \text { عحَدَثٌ ابْتِدائِيّ } \\
& \text { elementary function = دالَّةٌ ابْتِدائِئَّة } \\
& \text { elementary matrix = مُصْفوفةٌ ابْتْدائِيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { elementary number = عَدَدٌ ابْتِندائِيّي } \\
& \text { elementary operation = عَمَلِّيَّةٌ ابْتِدنائِيَّة } \\
& \text { elementary proof = بُرْهانٌ ابْتِدائِيّ } \\
& \text { elementary row operation =عَمَلِّةٌ سَطْرِيَّةٌ ابْتِدائِئَّة } \\
& \text { دوَوالُ مُتَناظِرَةٌ ابْنِدائِيَّة } \\
& \text { eliminant }=\text { مُحَصِّلة } \\
& \text { elimination }=\text { حَذْف } \\
& \text { ellipse }=\text { قَطْعٌ ناقِص } \\
& \text { ellipsoid = مُجَسَّمٌ ناقِصِيٌ (مُجَسَّمٌ إمْليلَجِيّ) } \\
& \text { ellipsoid of revolution =مُجَسَّمٌ ناقِصِيٌّ دَوَرانِيّ } \\
& \text { ellipsoidal coordinates = إحداثِيَّاتٌ ناقِصِيَّة فَضائِئَّة } \\
& \text { elliptic cone = مَخْروطٌ ناقِصِيّ } \\
& \text { سَطْحٌ مَخْروطِيٌّ ناقِصِيّ نيّ } \\
& \text { elliptic coordinates = إحداثِيَّاتٌ ناقِصِيَّة } \\
& \text { elliptic curve = مُنْحَنٍ ناقِصِيّيّ } \\
& \text { elliptic cylinder = أسطُوانةٌ ناقِصِيَّة } \\
& \text { elliptic differential equation = مُعادَلٌْ تَفاضُلِيَّةٌ ناقِصِيَّة } \\
& \text { elliptic function = دالَّةٌ ناقِصِيَّة } \\
& \text { elliptic geometry = المْنْدَسُّ النَّاقِصِيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { elliptic integrals = } \\
& \text { elliptic paraboloid =مُجَسَّمٌ مُكافِيْيٌّ ناقِصِيّ (إهْليَلَجِيّ) } \\
& \text { elliptic point }=\text { نُقْطُةٌ ناقِصِيَّة } \\
& \text { elliptic Riemann surface = سَطْحُ ريمان النَّاقِصِيّ } \\
& \text { نَنمَطٌ ناقِصِيّ } \\
& \text { elliptic wedge = إسفينٌ ناقِصِيّيّ } \\
& \text { elliptical (adj) = إْلِيلَجِيّ (ناقِصِيّ) } \\
& \text { ellipticity }=\text { إهْليلَجِيَّة (تَفَلْطُح - ناقِصِيَّة) } \\
& \text { E-matrix = مَصْفو فةٌ ابْتِدائِئَة } \\
& \text { embedding }=\text { طَمْر } \\
& \text { empirical curve }=\text { مُنْحَنٍ تَجْريبيّ } \\
& \text { empirical formula = صيغةٌ تَجْرِيبَّة } \\
& \text { empirical probability = احتِمالٌ تَجْرِيبيّ } \\
& \text { empty set = الَمْمْوعةُ الحالِية } \\
& \text { Encke roots }=\text { جَذْرْ إنْكي الما } \\
& \text { end point = نُقْطٌٌ طَرَفِيَّة } \\
& \text { endomorphism = تَداكُل (تَشاكُلٌ دانخلِيّ) } \\
& \text { end-vertex = رَأْسٌ طَرَفِيّ } \\
& \text { enneagon = مُضَلَّعٌ تُساعِيّ طِّيّ } \\
& \text { enneagonal number =عَدَدٌ تُساعِيّ } \\
& \text { enneahedron = مُتَعَدِّدُ وُجوهٍ تُساعِيّ } \\
& \text { entire function = دالّْةٌ صَحيحة } \\
& \text { entire ring = حَلَقٌة صَحيحة } \\
& \text { entire series = مُتَسَلْسلةٌ صَحيحة صَحَّ } \\
& \text { entire surd = جَذْرٌ أَحَمُ صَحيح } \\
& \text { entropy measure }=\text { قِياسُ الإنْتروبِيَّة } \\
& \text { entropy of a partition = إنْتروبيَّةُ تُجْزِئةُ } \\
& \text { entry }=\text { مَدْخَلِّلِ } \\
& \text { envelope }=\text { مُغَلِّف } \\
& \text { epi spiral = حَلَزونٌ فَوْقِيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { epicenter = مَرْكَز" فَوْقِي" } \\
& \text { epicycle = دائِرة فَوْقِيَّةَ } \\
& \text { دُحْرْوج فَوْقِيّ } \\
& \text { epigraph = بَيانٌ فَوْقِيَّ (فَوْق بَيان) } \\
& \text { epimorphism = تُشاكُلْ فَوْقِيَّ (تَشاكُلُّ غامِرِ } \\
& \text { epitrochoid = دُحْروجٌ عامٌ فَوْقِيّ } \\
& \text { epsilon = إبسيلون } \\
& \text { epsilon chain = سِلْسلةُ إبْسيلون } \\
& \text { epsilon neighbourhood }=\text { جوارُ إبسيلون } \\
& \text { epsilon net = شَبَكُة إبْسيلون إبن } \\
& \text { epsilon symbols =رُموزُ إبْسيلون } \\
& \text { equal (adj) = مُساو } \\
& \text { equal ripple property =خاصيّةُةُ التَّمَوُجاتِ المُتُساويةٍ } \\
& \text { equal sets = مَجْموعاتٌ مُتُساوِية } \\
& \text { equal sign = إشارةُ النَّساوي } \\
& \text { equal tails test = اختِبارٌ مُتساوي الذَئَلْيَن } \\
& \text { equality = تَساوٍ (مُساواة) } \\
& \text { equality of two free vectors = تَساوي مُتَّجِهْيْنِ طَليقَيْن } \\
& \text { equality of two matrices = تَساوي مَصْنْوَنَيْن } \\
& \text { equality of two sets = تَساوي مَجْمو عَتَيْن } \\
& \text { حالاتٌ مُتساويةُ الاحْتِمالات } \\
& \text { equals relation = عَلاقةُ مُساواة } \\
& \text { equate (v) = يُساوي (يُعادِل) } \\
& \text { equation = مُعادَلة } \\
& \text { equation of continuity = مُعادَلُُ الاسْتْمْرار }
\end{aligned}
$$

$$
\begin{aligned}
& \text { equator = خَطُّ الاسْنِواء } \\
& \text { equiangular polygon = مُضَلَّعٌ مُتساوي الزَّوايا } \\
& \text { equiangular polygons = مُضْلَّعانِ مُتَساويا الزَّوايا } \\
& \text { equiangular spiral =حَلَزونٌ مُتساوي الزَّوايا }
\end{aligned}
$$

```
    equiangular transformation = تَحْويلٌ مُحافِظٌ على الزّز'وايا
    equicontinuous at a point = مُتساوي الاسْنِمْرار عند نُقطة)
```



```
        equilibrium = تَوازُن
        equilibrium point = نُقْطُة توازُن)
    equimeasurable functions= = دالْتانِ مُتُساويَتا القَيووسِيّة)
        equinumerable sets = مَجْموعَاتٌ مُتْسَاوِيةُ، العِدَّات
        equipollent sets = مَجْموعاتٌ مُتسايرة)
        equipotent sets = مَجْموعاتٌ مُتُكافِئة)
        equiprobable events = أحدَاثٌ مُتسَّاويةُ الاحتِمَآلات
        equitangential curve = مُنْحَنٍ مُتساوي الُمماسًّات
        equivalence = تَكافُؤُ
    equivalence classes = صُفوفُ تَاثُؤُ
    equivalence relation = عَلاقةُ تَكافُؤُ
equivalence transformation = تَحْويلُ
        equivalent (adj) = مُكافِئ
        jequivalent angles = % <
```



```
        en\mp@code{مُعادَلاتٌ مُتكافِئة)}
    equivalent inequalities = مُتراجحات
        equivalent matrices = مُصْفو فَتانِ مُتُكافِئتان)
        equivalent norms = نظُ
```



```
        equivalent sets = مَجْموعاتٌ مُتُكافِئة)
equivalent transformation = تَحْويلُ
```

$$
\begin{aligned}
& \text { ergodic theorem of Birkhoff = مُبرْهَنُّ بيرْكوف الطَّاقِيَّة } \\
& \text { ergodic theory = النَّظرَيَّةُ الطَّاقِيَّة } \\
& \text { ergodic transformation =تَحْوِل" طاقِيّ } \\
& \text { Erlang distribution = تَوْزيعُ إرْانغ } \\
& \text { error }=\text { خَطَأَ } \\
& \text { error equation }=\text { مُعادَلةُ الحَطَكَّأُ } \\
& \text { error functions = دَوالُ الَّطَطَأُ } \\
& \text { error of the first kind = خَطْاًٌ من النُوْعُ الأوَّل } \\
& \text { error of the second kind = خَطّْا من النَّوْعِ الثُّانين } \\
& \text { error range = مَجالُ الحَطَأَ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { escribed circle = دائرةٌ خارجيَّة } \\
& \text { essential bound =حَدٌ أساسِيّ } \\
& \text { essential constants = تُوابِتُ أساسِيَّة } \\
& \text { essential infimum = الحَدُّ الأدنَى الأساسِيّ } \\
& \text { essential mapping = تَطْيقيٌ أساسِيّ } \\
& \text { essential singularity = نُقطُةُ شُذوذٌ أساسِيّ } \\
& \text { essential supremum = الحَدُّ الأعْلَى الأساسِيّ } \\
& \text { essentially bounded function = دالَّةٌ مَحْدودةٌ أساسيَّا الأِّا } \\
& \text { estimation theory = نَظَرَيَّةُ التَّقْدْ } \\
& \text { estimator }=\text { مُقَدِّرِّ } \\
& \text { Euclid numbers = أعدادُ إقليدس } \\
& \text { Euclidean algorithm = الخُوارزْمِيَّةُ الإقليديَّةُ الِيّة } \\
& \text { إِنُشاءٌ إِقْليديّ } \\
& \text { Euclidean distance }=\text { مَسافةٌ إقليديَّة } \\
& \text { Euclidean domain = مَنْطِقُةٌ إقْليديَّة } \\
& \text { Euclidean geometry = المَنْدَسُُ الإِقليديَّة } \\
& \text { Euclidean metric }=\text { دالَّةُ مَسافةٍ إقْلِيديَّةٌ } \\
& \text { نَظيمّ إقْليديّ } \\
& \text { Euclidean ring = حَلَقةٌ إقليديَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Euclidean space = فَضاءٌ إقليديّ } \\
& \text { Euclidean topology = الطبولوجيا الإقليديَّة } \\
& \text { Euclid's axioms = مَوْوعاتُ إقْليدس } \\
& \text { Euclid's fifth axiom = مَوْضوعةُ إقْليدس الخامِسة } \\
& \text { Euclid's postulates = مُسَلَّماتُ إقليدس إِلماس } \\
& \text { Eudoxus axiom = مَوْضوعةُ يودو كسس } \\
& \text { Euler angles }=\text { زوايا أويْلَر } \\
& \text { سِ سِلْسلةُ أويْلَر } \\
& \text { Euler characteristic =مُمِيِّا ٔو يلر } \\
& \text { Euler diagram = مُخَطْطُ أويْلَرِّلِ } \\
& \text { مُعادَلُةُ أويْلَر التَّفاضُلِيَّة } \\
& \text { Euler line = مُسْتِيمُ أويْلَرِ } \\
& \text { Euler method = طَريقُُ أويْلَرُ } \\
& \text { Euler multiplier = مَضْروبُ أويْلَر } \\
& \text { Euler number = عَدَدُ أويْرَر } \\
& \text { صuler summation formula = صيغةُ الجَمْع لأويلر } \\
& \text { Euler transformation =تَوْيلُ أويْلَرِ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { سِسلْسلةُ أويْلَريَّة } \\
& \text { دارةٌ أويْلَريَّة } \\
& \text { Eulerian description = ورْفٌ أويْلَريّ } \\
& \text { Eulerian graph = بَيانٌ أويلريّ } \\
& \text { Eulerian path = مَسارٌ أويلريّ } \\
& \text { Eulerian walk = مَسْلَكٌ أويلريّ "ميلّ } \\
& \text { مُعُادَلُُ أويْرَر -لاغْرانْج }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Euler's circles = دوائِرُ أويْيَر } \\
& \text { Euler's constant = ثابتةُ أويلر } \\
& \text { Euler's criterion = مِعْيارُ أويْيَر } \\
& \text { مُعادَلُُْ أويْرَر }
\end{aligned}
$$

$$
\begin{aligned}
& \text { صuler's formula = صيغةُ أويْلَر } \\
& \text { Euler's numbers = أعدادُ أويلَر } \\
& \text { Euler's phi function = دالَّةُ فاي لأويْلَر } \\
& \text { Euler's spiral }=\text { حَلَزونُ أويْلَر } \\
& \text { مُبرْهَنةُ أويْلَر } \\
& \text { even function }=\text { دالَّةٌ زَوْجَيَّة } \\
& \text { even node }=\text { عُقْدُةٌ زَوْجيَّة } \\
& \text { even number }=\text { عَدَدٌ زَوْجِيّ } \\
& \text { even permutation =تَبْديل زَوْجْيّ } \\
& \text { even prime = الُحَدَدُ الأوَّكُِّ الزَّوْجِيّ } \\
& \text { even vertex }=\text { رَأْسٌ زَوْجْيّ } \\
& \text { event }=\text { حَدَث } \\
& \text { evolute }=\text { مَنْشور [المنحني] } \\
& \text { evolution = تَجْذير } \\
& \text { exact differential = تَفاضُلٌ تامّ } \\
& \text { exact differential equation = مُعادَلةٌ تَفاضُلِيَّةٌ تامَّةُ } \\
& \text { صيغةٌ تَفاضُلِيَّةٌ تامَّة } \\
& \text { exact division = قِسْمةٌ تامَّة } \\
& \text { exact divisor = قاسِمٌ تامٌ } \\
& \text { exact sequence = مُتتالِليٌّ تامَّة } \\
& \text { excenter = مَرْكزُ دائرةٍ خارجيَّة } \\
& \text { excess of nines = فائِضُ التِّسْعات } \\
& \text { excircle = دائرةٌ خارجيَّة } \\
& \text { excluded middle }=\text { النَّالِثْ ُ المرَفْوع } \\
& \text { exclusive disjunction }=\text { فَصْلٌ إقصائِيّ (فَصْلٌ اسْنِبْعادِيّ) } \\
& \text { existence proof =بُهْانُ الوُجود } \\
& \text { existence theorem =مُرْهَنةُ الوُجود } \\
& \text { exmedian = مُتوَسِّطٌ خارجيّ ارجّ } \\
& \text { exmedian point }=\text { نُقْطةُ مُتْوَسِّطَنْنِ خارِزيَّيْن } \\
& \text { exotic four-space = فَضاءٌ رُباعِيٌّ دَخيل }
\end{aligned}
$$

$$
\begin{aligned}
& \text { exotic sphere = كُرةٌ دَخيلة } \\
& \text { expand (v) =يَنُشُ } \\
& \text { expanded notation = تَدْوينٌ مَنْشور } \\
& \text { رَقْمْ مَنْشور } \\
& \text { expansion }=\text { نَشْر } \\
& \text { expectation }=\text { تَوَقُّعُقْ } \\
& \text { expected value = قيمةٌ مُتَوَقَّعة } \\
& \text { experiment }=\text { تَجْرِبة } \\
& \text { experimental condition }=\text { شَرُطُ النَّجْرْبِبة } \\
& \text { experimental design =تَصْميمُ التَّجارِب } \\
& \text { explementary angles = } \\
& \text { explicit definition = تَعْريفٌ صَريح (ظاهِر) } \\
& \text { explicit function = دالَّةٌ صرَيحة (ظاهِرة) (ظّر) } \\
& \text { exploratory data analysis = تَحْليلُ اسْنِكْنَافِفُّيٌ للمُعْطَيَاترْ } \\
& \text { exponent }= \\
& \text { exponential curve = مُنْحَن أُسِّيّ } \\
& \text { exponential density function = دالُّةُ كَثافةٍ أُسِيّة } \\
& \text { exponential distribution =تَزْيعٌ أُسِّيّ } \\
& \text { exponential equation = مُعادَلةٌ أُسِيّة } \\
& \text { exponential function = دالَّةٌ ُُسيّةّة } \\
& \text { exponential generating function = دالَّةٌ مُوَلِّدةٌ أُسِيّة } \\
& \text { exponential integral = تَكامُلٌ أُسِّيّ } \\
& \text { exponential law = قانونٌ ُُسِّيّ } \\
& \text { exponential matrix = مَصْفو فُةٌ أُسِّةُ } \\
& \text { exponential notation = تَدْرينٌ أُسِّيّ } \\
& \text { exponential series = مُتَسَلْسِلُّ أُسِيَّة } \\
& \text { expression = تَعبير (عِبارة) } \\
& \text { exradius = نصْنُ قُطْرِ دائرةٍ خارِجيَّة } \\
& \text { exsecant =خارِج القاطِع } \\
& \text { extended binary tree = شَجَرةٌ اثْنْنَّةٌ مُمَدَّدة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { extended complex plane = المُستَوي العُقَدِيُّ المُمَّدَّ (المُوَسَّع) } \\
& \text { extended cycloid = دُحْروجٌ مُمَدَّد } \\
& \text { دُحُرورج فَوْقِيٌّ مُمَدَّد } \\
& \text { extended hypocycloid = دُحْروجٌ دانحِليٌّ مُمَدَّد } \\
& \text { extended plane = مُسْتُو مُمَلَّد (مُوَسَّع) } \\
& \text { extended real numbers = الأعْدادُ الحَقيقِيَّةُ المُوَسَّعة } \\
& \text { extension = تَمْديد } \\
& \text { extension field =حَقْلٌ مُمَدَّد } \\
& \text { extension map = تَطْبيقٌ مُمَلَّد } \\
& \text { exterior algebra }=\text { جَبْرٌ خارِجيّ } \\
& \text { exterior angle }=\text { زاوِيةٌ خارِجيَّةٌ } \\
& \text { exterior content =مُحْتَوُى خارِجيّ } \\
& \text { exterior differential = تَفاضُلٌ خارِجيّ } \\
& \text { exterior Jordan content =مُحْتَى جورْدان الخارِجيّ } \\
& \text { exterior measure = قِياسٌ خارِجِيّ } \\
& \text { exterior of a set =خارِجُ مَجْموعة } \\
& \text { exterior of an angle =خارِجُ زاوِية } \\
& \text { exterior point }=\text { نُقْطٌة خارِجَّةَّة } \\
& \text { exterior product = جُداءٌ خارجيّ } \\
& \text { exterior snowflake = نُدْفُةٌ كَلْجَيَّةٌ خارجِيَّة } \\
& \text { external division = تَقْسيمٌ خارِجيٌّ } \\
& \text { external dominating set =مَجْموعةٌ مُهَيْمِنةٌ خارِجيَّة } \\
& \text { external operation = عَمَلِيَّةٌ خارِجيَّة } \\
& \text { external path length }=\text { طولُ المسارِ الخارجيّ } \\
& \text { external similarity point = نُقْطُُ الَّشَابُبْ الخارجيّ } \\
& \text { external tangent =مُماسٌ خارِمِيّ } \\
& \text { externally tangent circles = دائِرَتانِ مُتْماسَّتانِ خارِجِيًّا } \\
& \text { extract a root }(v)=\text { يَسْتَخْرِ جُ جَذْرًا } \\
& \text { extraneous root }=\text { جَذْرٌ دَخيل } \\
& \text { extrapolation = استِكْمالٌ خارِجيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { extreme = قُصْوْى } \\
& \text { extreme and mean ratio = نسْبٌ قُصْوْكَ ووُوْمُطَى }
\end{aligned}
$$

$$
\begin{aligned}
& \text { extreme terms = حَحَانِ طَرْفِيَّانِ } \\
& \text { extreme value problem = مَسْأَلُّ التِيَمَ الْتُصْوَى } \\
& \text { extremum = فُصْوْى } \\
& \text { extrinsic (adj) = لاجَوْهُرِّريّ } \\
& \text { eyeball theorem = مُبرَهْنَهُ مُقْلِةٍ الحَّيْن }
\end{aligned}
$$

$$
\begin{aligned}
& \text { F } \\
& \text { face }=\text { وَجْهُ } \\
& \text { face angle = زاويةُ الوَجْه } \\
& \text { facet }=\text { سُطَيْح (وُجَيْه) } \\
& \text { factor }=\text { عامِل } \\
& \text { factor formulae = صِيَغْ عامِلِيَّة } \\
& \text { factor group = زُمْةُ خَوارِج القِسْمَ } \\
& \text { factor model = نَموذَجٌ عامِلِيّ } \\
& \text { factor module = مودولُ خَوارِج القِسْمْة } \\
& \text { factor of proportionality = عامِلُ النُّناسُب } \\
& \text { factor ring =حَقَقُة خَوَارِج القِسْمْة } \\
& \text { factor space = فَضاءُ خَوَارِجِ القِسْمَ } \\
& \text { factorable integer = عَدَدٌ صَحيحٌ قابِلٌ للنَّحْليل إلى عَوامِل } \\
& \text { factorial }=\text { عامِلِيّ } \\
& \text { factorial design = تَصْميمّ عامِلِيّ } \\
& \text { factorial moment = عَزْمٌ عامِلِيّي" } \\
& \text { factorial ring = حَلَقةٌ عامِلِيَّة } \\
& \text { factorial series = الُتُسَلْسلةُ العامِلِيَّة } \\
& \text { factoring = تَحْليِلٌ إلى عَوامِل }
\end{aligned}
$$

$$
\begin{aligned}
& \text { fair game = مُباراةٌ عادِلة } \\
& \text { faithful module = مودولٌ أمين } \\
& \text { faithful representation =تَمْثيلٌ أمين } \\
& \text { fallacy = مُغالَطة } \\
& \text { false (adj) }=\text { خاطِئ } \\
& \text { false acceptance = قَبولٌ خاطِئ } \\
& \text { false position =طَ يقةُ الوَضْع الخَطَأَ (حِسابُ الخَطَئيْن) } \\
& \text { false rejection =رَفْضْ خاطِئ } \\
& \text { family }=\text { جَماعة } \\
& \text { family of curves = جَماعةُ مُنْحَنيات }
\end{aligned}
$$

$$
\begin{aligned}
& \text { family of surfaces = جَماعةُ سُطوح } \\
& \text { Fano plane = مُسْتوي فانو } \\
& \text { Fano's axiom = مَوْضوعةُ فانو } \\
& \text { Farey sequence = مُتتالِيُُ فاري } \\
& \text { farthest point }=\text { أبْعَدُ نُقْطة } \\
& \text { fast Fourier transform = مُحَوِّلُ فورْييهه السَّريع } \\
& \text { Fatou-Lebesgue lemma = تَوطِئُة فاتو - لوبيغ } \\
& \text { feasible flow = جَرَيانٌ مُجْدٍ } \\
& \text { feasible set = مَجْموعةٌ مُجْدِية } \\
& \text { مُبرَهْنَةُ فايت-طُمْسون } \\
& \text { Fejer's theorem =مُرْهَنُةُ فيجرَ } \\
& \text { Fermat numbers = أعدادُ فيرْما } \\
& \text { Fermat point = نُقطُُ فيرْما } \\
& \text { Fermat's last theorem = مُبْهَنْةُ فيرْما الأخيرة } \\
& \text { مُبرْهَنُةُ فيرْما الصَّغيرة } \\
& \text { Fermat's spiral =حَلَزونُ فيرْما انما فـا } \\
& \text { Fermat's theorem }=\text { مُبرْهَنُةُ فيرْما } \\
& \text { Ferrari's method = طَيقةُ فِراري } \\
& \text { Ferrers diagram = مُخَطُّطُ فِرارز فُرانُ } \\
& \text { Ferrers graph = بَيانُ فِرارز } \\
& \text { fiber }=\text { ليف } \\
& \text { fiber bundle = حُزمْةٌ لِيفِيَّة } \\
& \text { Fibonacci number }=\text { عَدَدُ فيبوناتْشي } \\
& \text { Fibonacci sequence = مُتتالِيُُ فيبوناتْشي } \\
& \text { field }=\text { حَقْل } \\
& \text { field of fractions =حَقْلُ كُسور } \\
& \text { field of integration = مْنُطِقُة المُكامَلة } \\
& \text { field of sets = حَقْلُ مَجْمْوعات } \\
& \text { field theory = نظَرِيَّةُ الحُقول } \\
& \text { Fields' medal = ميدالِيَّةُ فيلدز (وسامُ فيلدز) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { figurate numbers = أعدادٌ شَكْلِّيَّة } \\
& \text { figure }=\text { شَكْل } \\
& \text { filter = مُرَشِّحة } \\
& \text { filter base }=\text { قاعِدةُ مُرَشِّحة (أساسُ مُرَشِّحة) } \\
& \text { final-value theorem = مبرْهَنةُ القيمةِ النّهِائِيَّة } \\
& \text { fineness of a partition =رقَّةُ تَجْزئة } \\
& \text { finite character = سِمةٌ مُنتْهِية } \\
& \text { finite decimal }=\text { عَشْريٌّ مُنتنهٍ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { finite discontinuity }=\text { انْقِطاعٌ مُنْتَهٍ } \\
& \text { finite element method = طَيقةُ العَناصِرِ الُمْنُهِية } \\
& \text { finite extension = مُمَلَّدٌ مُنتْهٍُ } \\
& \text { finite field = حَقْلٌ مُنْتْهٍ } \\
& \text { finite Fourier transform =مُحَوِّلُ فورْييه المُنْتُمي } \\
& \text { finite geometry = هَنْدَسّْ مُنتْهِية } \\
& \text { finite group }=\text { زُمْرةٌ مُنْتَهية مُنْية } \\
& \text { finite induction =استِقراءُ مُنتْهٍ } \\
& \text { finite mathematics = الرِياضِيَّاتُ الُمْنتَهِية } \\
& \text { finite matrix }=\text { مُصْفو فٌة مُنْتَهِية } \\
& \text { finite measure = قِياسٌ مُنْتَهٍ } \\
& \text { finite measure space =فَضاء قِياس مُنْتَهٍ } \\
& \text { finite moment theorem =مْبرهْنَةُ العُزومِ المُنْتُهِية } \\
& \text { finite plane }=\text { مُسْتَور مُنْتهٍ } \\
& \text { finite population = مُجْتَمَعٌ إحْصائِيٌّ مُنْتُهٍ } \\
& \text { finite projective plane =مُسْتو إسْقاطِيّ مُنتْهٍ } \\
& \text { finite quantity }=\text { كَمِّيَّةٌ مُنْتَهِية } \\
& \text { finite sequence = مُتَتالِيةٌ مُنْتُهية } \\
& \text { finite series = مُتسَلْسِلةٌ مُنْتَهية } \\
& \text { finite set }=\text { مَجْمورعةٌ مُنْتَية } \\
& \text { finite-difference equations = مُعادَلاتُ فُرو قِيَّةٌ مُنتْهِية }
\end{aligned}
$$

$$
\begin{aligned}
& \text { finite-dimensional (adj) =مُنتْهي الأبععاد }
\end{aligned}
$$

$$
\begin{aligned}
& \text { finitely generated extension = تَمْديدٌ مُنتنهي التَّوْليد } \\
& \text { finitely representable (adj) = قابِل" للنَّمْثيل المُنْتُهي } \\
& \text { Finsler geometry = هَنْدَسةُ فِنْسْنَرُ } \\
& \text { first derivative }=\text { الُمشْتُقُقُ الأوَّل } \\
& \text { first derived curve =مُنْحَن المُمُنْقِقِ الأوَّل الاولِ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { first law of the mean = قانونُ القيمةِ الوُسْطَى الأوَّلَ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { first pedal curve = مُنْحَنٍ قَدَمِيٌّ أروَّل } \\
& \text { first positive pedal curve = مُنْحَنٍ قَدَمِيٌّ موجِبٌ أوَّل } \\
& \text { first principles = المَبادِئُ الأُولَى } \\
& \text { first quadrant = الرُّبُ الأوَّل } \\
& \text { first species = النَّوْ الأوَّل } \\
& \text { first-category set = مَجْموعةٌ من الفِئِةِ الأُولَى الْكَلِّ } \\
& \text { first-kind induction = استِقْراءٌ من النَّوْع الأوَّلَ } \\
& \text { first-order differences = فُروقٌ من الَمرتْبَةِ الأُولىَى } \\
& \text { Fisher-Behrens problem = مَسْألةُ فيشَر-بيرنْ المُز } \\
& \text { Fisher-Irwin test }=\text { اختِبارُ فيشَرَ - إرْوين } \\
& \text { Fisher's distribution = تَوْزيُ فيشر } \\
& \text { Fisher's exact test = اختِبارُ فيشر التَّامّ } \\
& \text { Fisher-Yates test = اختِبارُ فيشَر - يَتِس } \\
& \text { five-dimensional space = فضاءٌ خُماسِيُّ الأبْعاد } \\
& \text { fixed point = نُقْطٌة ثابتة } \\
& \text { fixed point theorems = مُبرَهَناتُ النُقْطْةِ الثُّابِتة } \\
& \text { fixed set = مَجْموعةٌ ثابِبة } \\
& \text { fixed value = قيمةٌ ثابتة } \\
& \text { flat space }=\text { فَضاءُ مُسُطَّحْ } \\
& \text { flecnode = عُقْدُة انْعِطاف }
\end{aligned}
$$

$$
\begin{aligned}
& \text { flexion }=\text { تَتْنية } \\
& \text { floating arithmetic =حِسابٌ بالفاصِلةِ العائِمة } \\
& \text { floor function = دالَّةٌ أرْضِيَّة } \\
& \text { Floquet theorem = مُبرْهَنُةُ فْلو كيه } \\
& \text { flow }=\text { جَرَيان } \\
& \text { focal chord = وَتَّ بُؤْرِيّ (وتَرّْ مِحْرَقِيّ) } \\
& \text { focal property = خاصِيّةٌ بُؤُرْيَّة } \\
& \text { focal radius = نصْنُ قُطْرْ بُؤْرِيّ } \\
& \text { focus = بُؤَرْ (مِحْرَقَق) } \\
& \text { folium }=\text { وُرَيْقة } \\
& \text { folium of Descartes = ورُيْقُُةُ ديكارت } \\
& \text { مُبرْهَنَةُ فورد-فُلْكِرْسون } \\
& \text { forest = غابة } \\
& \text { fork = شَوْكَة } \\
& \text { form = صيغة } \\
& \text { formal logic = مَنْطِقٌ صوريّ } \\
& \text { formal power series = مُتَسَلْسلةُ قُوُى صوريَّة } \\
& \text { formula = صيغة، قاعِدة } \\
& \text { forward difference = فَرْقٌ أمامِيّ } \\
& \text { forward difference operator = مُؤتِّرُ فَرْق أمامِيّ } \\
& \text { forward shift operator = مُؤتُّرْ إزا الحةٍ أمامِيَّة } \\
& \text { four coins problem = مَسْألةُة قِطَع النُقودِ الأرْبُع } \\
& \text { four-color problem = مَسْألةُ الألْورانِ الأرْبُعة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Fourier coefficients = مُعامِلاتُ فوريْيـه } \\
& \text { Fourier expansion = نَشْرُ فوريْيهر } \\
& \text { Fourier integrals = تَكامُا فوريّيه } \\
& \text { Fourier kernel = نواةُ فوريّيه } \\
& \text { مُتَسَسْسِلُّ فورْييه = Fourier series }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Fourier space =فَضاءُ فورْييه } \\
& \text { Fourier synthesis = تَرْكيبُ فورْييه } \\
& \text { Fourier transform = مُحوِّلُ فوريْيـه } \\
& \text { Fourier-Bessel series = مُتَسَلْسلةُ فورْييه-بسِل } \\
& \text { Fourier-Bessel transform = مُحَوِّل فورْيَهـه- بسل } \\
& \text { Fourier's theorem =مَرْهَنُة فورْيُيهن } \\
& \text { Fourier-Stieltjes series = مُتَسَلْسِلةُ فورْيِه-سْنيلْجِس } \\
& \text { four-point set = مَجْموعةٌ رُباعِيَّةُ النّقاط } \\
& \text { four-squares theorem =مُبَهْنُةُ المُرَبَّعاتِ الأربَعة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { fourth quadrant = الرُّبع الرَّابِع } \\
& \text { fractal =كُوريّ } \\
& \text { fraction }=\text { كسْر } \\
& \text { fractional equation = مُعادَلةٌ كَسْرَيَّة } \\
& \text { fractional factorial experiment }=\text { تَجْرِبٌة عامِلِّةِّةٌ كَسْرِيَّة } \\
& \text { fractional ideal = مِنثالِيٌ كَسْريّ كيّ كِيّ } \\
& \text { fractional part }=\text { جُزْءٌ كَسْرِيّ كِّريّ } \\
& \text { frame of reference = إطارٌ مَرْجِعيّ } \\
& \text { Frattini subgroup = زُمْةُ فراتيني الجُزئِيَّة } \\
& \text { Fréchet differential = تَاضُلُ فْريشِه } \\
& \text { Fréchet filter = مُرَشِّحُةُ فُريشِهِ } \\
& \text { Fréchet space = فَضاء فُرْيشِه } \\
& \text { Fredholm determinant =مُحَدِّدةُ فْريدْهولْم } \\
& \text { Fredholm minors =صُيْر اتُ فْريدْهولْمْ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Fredholm theory }=\text { نَظَرِيَةُ فْريدْهولْمُ رِّهُ } \\
& \text { free Abelian group = زُمْرَّةٌ آبليَّة حُرَّة } \\
& \text { free element of a group = عُنصرُ حُرٌ في زُمْرة } \\
& \text { free group = زُمْرَّ حُرَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { free module = مودولٌ حُرّ } \\
& \text { free tree = شَجَرةٌ حُرَّة } \\
& \text { مُمُّجةٌ حرّ (مُتَّجهٌ طَليق) } \\
& \text { freedom equation = مُعادَلُّةُ الحُريِّة } \\
& \text { Frenet-Serret formulas = صِيَغ فُرينيه-سيريه } \\
& \text { frequency = تَكْرار (تَرَدُّد) } \\
& \text { frequency curve =مْنحَني التُّكُرارات } \\
& \text { frequency distribution =توزيعُ التَّكْرارات } \\
& \text { frequency function = دالُْةُ التُّكْرارات } \\
& \text { frequency polygon = مُضَلُّعُ تَكْرار } \\
& \text { frequency probabilities = احِمَالاتُ التُّكْرارات } \\
& \text { frequency table = جَدْوَلُ التُّكْرارات } \\
& \text { Fresnel integrals = تَكامُلا فْرينَل } \\
& \text { friendship theorem =مُرْهْنُةُ الصَّداقة } \\
& \text { Frobenius group = زُمْرة فروبينيوس } \\
& \text { Frobenius map =تَطبيقُ فْروبينيوس } \\
& \text { Frobenius method = طَيقةُ فْروبينيوس } \\
& \text { Frobenius theorem =مُبرْهَنُة فْروبينيوس فروبين } \\
& \text { frontier of a set = مُحيطُ مَجْموعة (جَبْهُةُ مَجْموعة) } \\
& \text { Frucht graph = بَيانُ فْرُخت } \\
& \text { frustum }=\text { جذْ } \\
& \text { Fubini's theorem = مُبرْهَنُة فوبيني } \\
& \text { Fuchsian differential equation =مُعادَلُّةُ فوش التَّفَاضُلِيَّة } \\
& \text { full angle = زاويةٌ كامِلة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { full measure of a set =قِياسٌ كامِل لِمَجْموعة } \\
& \text { full rank = رُنبٌّ كامِلة } \\
& \text { function = دالّة (تابع) } \\
& \text { function space = فَضاءُ دَوالّ } \\
& \text { function table }=\text { جَدْوَلُ دالَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { functional = دالِّيّ } \\
& \text { functional analysis = الُّتحْلِلُ الدَّآليّي" } \\
& \text { functional congruence = تُطابُقٌ دالِّيّ } \\
& \text { functional constraint }=\text { قَيْدٌ دالِّيِّيٌ } \\
& \text { functional determinant = مُحَدِّدةٌ دالِّيّة } \\
& \text { functional equation = مُعادَلّْةٍ دالِّيّة } \\
& \text { functional graph = يَيانٌ دالِّيّ } \\
& \text { functor }=\text { دالّ } \\
& \text { fundamental group = زُمْرةٌ أساسِيَّة } \\
& \text { fundamental matrix }=\text { مُصْفو فُّةُ أساسِيَّة } \\
& \text { fundamental parallelogram }=\text { مُتوازي أضْلا ع أساسِيّ } \\
& \text { fundamental region = مْنْطِةُة أساسِيَّة } \\
& \text { fundamental sequence = مُتْتالِيةٌ أساسِيَّة } \\
& \text { fundamental set of solutions = مَجْموعةُ أساسِيَّةٌ لِلْحُلولِ } \\
& \text { fundamental tensor =مُوتِّر" أساسِيّ } \\
& \text { funnel }=\text { قِمْع } \\
& \text { fuzzy logic = مْنطقِقٌ تَرْجيحِيّ } \\
& \text { fuzzy mathematics = الرِّياضِيَّاتُ التَّرْجيحِيَّة } \\
& \text { fuzzy model = نَموذَجٌ تَرْجيحِيّ } \\
& \text { fuzzy relation = عَلاقةُ تَرْجيحِيَّة } \\
& \text { fuzzy relational equation = مُعادَلةٌ عَلاثِقِيَّةٌ تَرْجيحِيَّة } \\
& \text { fuzzy set = مَجْموعةٌ تَرْجيحِيَّةِّ } \\
& \text { fuzzy value = قيمةٌ تَرْجيحِيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { G } \\
& \text { Gabriel's horn =برقُ غابرْ ييل } \\
& \text { Gallucci's theorem =مُرْهْتُنُ غالوتْشي } \\
& \text { Galois extension = تَمْديدُ غالْوَا } \\
& \text { Galois extension field = حَقْلُ تَمْديدِ غالْوَا } \\
& \text { Galois field }=\text { حَقْلُ غالْوَا } \\
& \text { Galois group = زُمْرُ غالوا } \\
& \text { Galois theory = نَظَرَئُةُ غالْوا } \\
& \text { Galtonian curve }=\text { مُنحَني غالْتون } \\
& \text { game }=\text { مُباراة (لُعْبة) } \\
& \text { game theory = نَظَرِيَّة المُباريَات (الألْعِاب) } \\
& \text { game tree }=\text { شَجَرَةُ المُبارَيات } \\
& \text { gamma }=\text { غاما } \\
& \text { gamma distribution = تَوْزيعُ غاما } \\
& \text { gamma function = دالْةُ غاما }
\end{aligned}
$$

> gap series = مُتَسَلْسِلةٌ ذاتُ فَجَوَ
> Gaskin's theorem = مُبْهَنَنُ غاسْكين
> Gauss formulas = دَساتيرُ غاوس
> Gauss integral = تَكامُلُ غاوس
> Gauss lemma = تَوْطِئةُ غاوس
> مُنْحَني غاوس للأَخْطاء
> Gauss' test $=$ اختِبارُ غاوْس
> Gauss' theorem I =مُرْهَنَةُ غاوس الأُولَى
> Gauss' theorem II = مُبرْهَهُنُّ غاوس الثَّانية
> Gauss' theorem III = مُرْهَنَهُ غاوس الثَّأِثنة
> Gauss' theorem IV = مُرْهَنَةُ غاوس الرَّابِعة
> Gauss's transformation =تَحْ يلُ غاوس الرُبار
> Gauss-Bonnet theorem =مُرْهَنُةُ غاوس- بونيه
> تَقَوُسْ غاوسيّ

$$
\begin{aligned}
& \text { مُنْحَن غاوسيّ } \\
& \text { Gaussian distribution =تَزْيعٌ غاوسيّ } \\
& \text { Gaussian elimination =حَذْفٌ غاوسيّ } \\
& \text { Gaussian field = حَقْلُ غاوس } \\
& \text { Gaussian function = دالّْةُ غاوس } \\
& \text { Gaussian noise = ضَجيجُ غاوس } \\
& \text { Gaussian reciprocity law = قانونُ التُّعاكُسِ الغاوسيّ } \\
& \text { Gaussian reduction }=\text { اختِز الُ غاوْس } \\
& \text { Gaussian representation =تَمْيلُ غاوس } \\
& \text { Gauss-Jordan elimination =حْذْ غاوس- جورْدان } \\
& \text { Gauss-Legendre rule =قاعِدُُ غاوس- لوجانْدر }
\end{aligned}
$$

$$
\begin{aligned}
& \text { gear curve = مُنْحَنٍ مُسنَّن } \\
& \text { Gegenbauer polynomials = حُدو دِيَّاتُ غيْنِنْاورَر } \\
& \text { Gelfand-Mazur theorem = مُبْهَنُةُ غيلْفانْد- مازور } \\
& \text { Gelfond's theorem = مبرْهَنَنُ غيلْفونْد } \\
& \text { Gelin-Cesàro identity = متطابقة جيلين- سيزارو } \\
& \text { general induction }=\text { استقِراءٌ عامٌ } \\
& \text { general position }=\text { ورضْعٌ عامّ عرمّ } \\
& \text { general solution = حَلّ عامّ } \\
& \text { general term =حَدِّ عامٌ } \\
& \text { general topology = الطبولوجيا العامَّة } \\
& \text { generalized coordinates }=\text { إحداثِيَّاتٌٌ مُعَمَّمة } \\
& \text { والّْهُ دِلْتا المُعَمَّمة } \\
& \text { generalized Euclidean space = فَضاءٌ إقليديٌّ مُعمَّم } \\
& \text { generalized Fermat equation =مُعادَلُة فيرمْا المُعَمَّمة } \\
& \text { generalized function = دالَّةٌ مُعَمَّمة } \\
& \text { generalized inverse =مْعْكوسٌ مُعَمَّم } \\
& \text { generalized permutation }=\text { تَبْديلٌ مُعَمَّم } \\
& \text { generalized polynomial = حُدودِيَّةٌ مُعَمَّمة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { generalized power = فُوَّةٌ مُعَمَّمة } \\
& \text { generalized ratio test = اختِبارُ النِّسْبَة المُعَمَّم } \\
& \text { generalized sequence }=\text { مُتَتالِليةٌ مُعَمَّمة } \\
& \text { generating function }=\text { دالَّةٌ مُولِّلِّة } \\
& \text { generator }=\text { مُوَلِّد } \\
& \text { generatrix }=\text { مُولِّلد (راسِم) } \\
& \text { Genocchi number }=\text { عَدَدُ جينو كي رُم } \\
& \text { geodesic }=\text { جيوديزيّ } \\
& \text { geodesic circle }=\text { دائِرةٌ جيو ديزَّة } \\
& \text { geodesic curvature }=\text { تَوَّسٌ جيو ديزِيّ } \\
& \text { geodesic distance = مَسافةٌ جيو ديزِيَّة } \\
& \text { geodesic ellipse = قَطْعٌ ناقِصٌ جيوديزيّ } \\
& \text { geodesic hyperbola = قَطْعٌ زائِدٌ جِيو ديزِيّ } \\
& \text { geodesic line = خَطُّ جِيوديزِيّ جِّ } \\
& \text { geodesic parametric }=\text { وَسيطانِ جيو ديزِّيَّان } \\
& \text { geodesic polar coordinates = إحداثِيَّانِ قُطْبَّان جيوديزَّيَّان } \\
& \text { geodesic radius = نصْنُ قُطْرٍ جَيوديزِيّ } \\
& \text { geodesic torsion }=\text { الْنِفافِّ جيو ديزِيّ } \\
& \text { geodesic triangle }=\text { مُثَّنْثٌ جيوديزيّ } \\
& \text { geometer = مُتَخَصِّصٌ في عِلْم الهُنْدَسة } \\
& \text { geometric average }=\text { مُتوَسِّطُ هَنْدَسِيّ } \\
& \text { geometric complex }=\text { مُرَكَّبٌ هَنْدَسِيّ } \\
& \text { geometric construction =إنشاء هَنْدَسِيّ } \\
& \text { geometric distribution }=\text { تَوْزيعٌ هَنْدَسِيمّ } \\
& \text { geometric figure }=\text { شَكْلٌ هَنْدَسِيّ هنُ } \\
& \text { geometric mean }=\text { وَسَطٌ هَنْدَسِيّ } \\
& \text { geometric progression }=\text { مُتور الِيةٌ هُنْدَسِيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { geometric solution }=\text { حَلٍّ هَنْدَسِيّ هُّ } \\
& \text { geometrize }(v)=\text { يُهَنْدِس (يُعالِلُ هَنْدَسِيَّا) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { geometry = عِلْمُ المَنْدَسة } \\
& \text { Gergonne line =مُسْتَقيمُ جيرْغون ن } \\
& \text { Gergonne point }=\text { نُقْطةُ جيرْغونم } \\
& \text { Gergonne's theorem }=\text { مُبرْهَنةُ جيرْغونرنون } \\
& \text { مُبرْهَنةُ دوَ ائِرُ جيرْنْغورين } \\
& \text { Gerschgoren's theorem =مُبرهَنةُ جيرْشْغْررين } \\
& \text { gibbous (adj) }=\text { مُحْدَوْوِبِبُ } \\
& \text { Gibbs phenomenon = ظاهِرةُ جيبْس } \\
& \text { Gibrat's distribution }=\text { تَوْزيعُ جيبرا } \\
& \text { gigantic prime = عَدَدٌ أوَّلِّيٌّ عِمْلاق } \\
& \text { girth }=\text { طَوْقْ } \\
& \text { give-and-take lines =خُطوطُ أخْذٍ وعَطاء } \\
& \text { glide }=\text { انْزِلاق } \\
& \text { global property = خاصيِّةُ شامِلة } \\
& \text { gnomon = مُتوازي أضْالِ ع ناقِص } \\
& \text { gnomon magic square }=\text { مُرَبَّعٌ سِحْرِيٌّ ناقِص } \\
& \text { gnomonic number = عَدَدٌ ناقِص } \\
& \text { gnomonic projection =مَسْقَطٌ مُماسِّيٌّ مَرْكَزِيّ } \\
& \text { Gödel number = عَدَدُ غودل } \\
& \text { Gödel second theorem = مبرْهَنةُ غودل الثّانِية } \\
& \text { Gödel statement }=\text { تَقْريرُ غودل } \\
& \text { Gödel's theorem =مبْهْنَةُ غودل } \\
& \text { Gödel's proof = بُرْهانُ غودل } \\
& \text { Goldbach conjecture }=\text { مُخَمَّنُّ غولْدْباخ } \\
& \text { golden mean =وَسَطٌ ذَهَبِيّ } \\
& \text { golden ratio = النِّسْبُةُ الذَّهبَيَّة } \\
& \text { golden rectangle }=\text { مُسْنَطيلٌ ذَهَبيّ } \\
& \text { golden rule = القاعِدةُ الذَّهَبَّةَّةِ } \\
& \text { golden section }=\text { قَطْعٌ ذَهَبيّ } \\
& \text { golden triangle }=\text { الُمثَلَّثُ الذَّهَبِيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Gompertz curve = مُنْحَني غومْرْتْنز } \\
& \text { good prime = عَدَدٌ أوَوِّلِّ جِيِّد } \\
& \text { goodness of fit = جَوْدُة المُلاءِمَة } \\
& \text { graceful graph = يُيانٌ رَشيق } \\
& \text { grade }=\text { غْراد } \\
& \text { graded Lie algebra }=\text { جَبرُ لِي المُتَرِّرِّ } \\
& \text { gradian }=\text { غْراديان } \\
& \text { gradient }=\text { تَدَرُّ } \\
& \text { gradient method }=\text { طَيقةُ التَّدَرُّرُ ج } \\
& \text { Graeffe (or Gräffe) method =طَريقةُ غْرافي } \\
& \text { Gram determinant }=\text { مُحَدِّدةُ غْرامر } \\
& \text { Gram matrix = مُصْفوفُّ غْرام } \\
& \text { Gram's theorem =مُرَهْنُةُ غْرام } \\
& \text { إجر ائِئَةُ غْرام-شْمُميت } \\
& \text { graph = بَيان } \\
& \text { graph Cartesian product }=\text { الجُداءُ الدِّيكارتِيُّ لِبيانيْن } \\
& \text { graph center = مَرْكُزُ بَيان } \\
& \text { graph circumference = مُحيطُ بَيان } \\
& \text { graph complement = مُتَمِّمُة بَيان يُنَان } \\
& \text { graph component }=\text { مُرَكِّةُ بَيانَّةُ } \\
& \text { graph composition = تَرْكيبُ بَيَانْيُن } \\
& \text { graph cycle = دَوْرَةُ بَيان } \\
& \text { graph diameter }=\text { قُطْرُ بَيان }
\end{aligned}
$$

$$
\begin{aligned}
& \text { graph distance }=\text { مَسافةُ بَيان } \\
& \text { graph eccentricities = التَّباعُدانِ الَمْكَزِيَّانِ لِبَيان نِيان } \\
& \text { وraph eigenvalues = القِيَمُ الذَّاتِيَّةُ كِبَيَان } \\
& \text { graph geodesics }=\text { جيو ديزِيَّاتُ بُيانُ لِنُ } \\
& \text { graph intersection = تَقاطُع بَيانيْنْ } \\
& \text { graph isomorphism = تَماكُلُ بَيانَيْن }
\end{aligned}
$$

$$
\begin{aligned}
& \text { وraph join = ضَمُ بَيَنْيْن } \\
& \text { graph radius = نصْتُ قُطْرْ بَيان } \\
& \text { graph spectrum = طَيْنُ بَيان } \\
& \text { graph sum = مَجْموعُ بَيَانْيْن } \\
& \text { graph theory = نَظَريَّة البِيان } \\
& \text { graph union }=\text { اجِتماعُ عَيانَيْن } \\
& \text { مُمتَتالِيةٌ بَيانيّة } \\
& \text { graphical analysis = التَّحْليلُ البَيَانيّ } \\
& \text { تَجْزَ } \\
& \text { graphical representation }=\text { تَمْثِيلٌ بَيانِيّ } \\
& \text { graphical solution =حَلْ بَيانيّ } \\
& \text { Grassmann algebra }=\text { جَبْر غْراسْمان } \\
& \text { Grassmann manifold = مُتَنَوِّةُ غْراسْمَان ران } \\
& \text { ونابتةُ الجاذِبيّة } \\
& \text { gravity }=\text { جاذِيِّة } \\
& \text { دائِرةٌ عُظْمَى (دائِرةٌ كُبْرَى) } \\
& \text { القاسِمُ المُمْتْرَكُ الأُعْظَمَ } \\
& \text { greatest common factor }=\text { العامِلُ المُشْترَكُ الأعْظَمَ } \\
& \text { والّْةُ أَكْبرِ عَدَدٍ صَحيح }
\end{aligned}
$$

$$
\begin{aligned}
& \text { greatest-lower-bound axiom = مَوْضوعةً الحَدِّ الأدنْىَى المِّى } \\
& \text { Green's dyadic =ُناءُ غرين } \\
& \text { Green's function = دالَّةُ غْرين } \\
& \text { Green's theorem =مُرْهَنُ غْرين غرين } \\
& \text { Green's theorem in space = مبَرْهَنُّ غْرين في الفضاء } \\
& \text { مُتَسَلْسِلُُ غْرِيغوري فيري } \\
& \text { group }=\text { زمْرة } \\
& \text { group theory = نَظَريَّةُ الزُمُر } \\
& \text { تَجْمْيُ حُدود } \\
& \text { groupoid }=\text { زُمَيْرة }
\end{aligned}
$$

$$
\begin{aligned}
\text { growth index } & =\text { دُلَّهٌ غورِلُ النُّموٌّ }
\end{aligned}
$$

H

$$
\begin{aligned}
& \text { Haar condition =شَرْطُ هار } \\
& \text { Haar integral = تَكمُملُ هارْ } \\
& \text { Haberdasher's problem = مسْألةُ هابرْداشَرُ مارْ } \\
& \text { Hadamard configuration = تَشْكُكلُّ هادمار } \\
& \text { Hadamard formula = صيغةُ هادَمار } \\
& \text { Hadamard inequality = مُتَباينةُ هادَمار هادَار } \\
& \text { Hadamard matrix = مُصْفو فُُةُ هادَمار } \\
& \text { Hadamard product }=\text { جُداءُ هادَمار } \\
& \text { Hadamard theorem = مُبرْهَنُةُ هادَمار ادَار } \\
& \text { Hadamard's inequality = مُتَباينةُ هادَمار هـمار } \\
& \text { Hahn decomposition = تَفْريقُ هان مانمار } \\
& \text { Hahn-Banach theorem = مُبرْهَنُةُ هان- باناخ } \\
& \text { half line = نصْنُ مُسْتَيم } \\
& \text { half plane }=\text { نصْنُ مُسْتُوٍ } \\
& \text { half space }=\text { نصْفُ فَضاء } \\
& \text { half turn = نصْفُ دَوْرة } \\
& \text { half-angle formulas = صِيُغ نصْن الزَّاوِية } \\
& \text { half-closed interval = مَجالٌ نصْفُ مُغْلَق } \\
& \text { half-open interval =مَجالٌ نِصْفُ مَفْنوح } \\
& \text { half-range series = مُتِسَلْسِلُُ نصْفِ المَجال } \\
& \text { half-width }=\text { نصْفُ العَرْض } \\
& \text { Hall subgroup = زُمرةُ هول الجُزُئئَّة } \\
& \text { Hall's theorem =مُبرْهَنُةُ هول } \\
& \text { Halley's method =طَريقُُ هالي } \\
& \text { مُبرْهَنَةُ الشَّطيرة } \\
& \text { Hamel basis = قاعِدةُ هامِل }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Hamilton-connected graph = بيَنُ هاملتون المُنرابط } \\
& \text { Hamiltonian chain = سِلْسلةٌ هامِلْنونَيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Hamiltonian circuit = دارةٌ هامِلْونيَّة } \\
& \text { Hamiltonian cycle = دَوْرةٌ هامِلْنونيَّة } \\
& \text { Hamiltonian graph = بَيانٌ هاملتونيّ } \\
& \text { Hamiltonian path = مَسارٌ هامِلْنونيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { handkerchief surface = سَطْحٌ مِنْديليّيّ } \\
& \text { Hankel functions = دأَّا هانْكل } \\
& \text { Hankel matrix = مَصْفوفةُ هانْكل } \\
& \text { Hankel transform = مُحوِّلُ هانْكل } \\
& \text { Hankel's integral = تَكامُلُ هانُكِل } \\
& \text { Hanoi graph = بَيانُ هانوي هان } \\
& \text { Hanoi towers = أبراجُ هانوي } \\
& \text { Hansen's problem = مَسْألةُ هانْسَن } \\
& \text { harmonic analysis = تَحْلِلِّ تَو افُقِيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { harmonic conjugates = مُر افِقَتانِ تَو افُقِيَّا } \\
& \text { harmonic division = تَقْسيمٌ تَو افُقِيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { harmonic mean = وَسُطٌ تَوافُقِي" } \\
& \text { harmonic measure }=\text { قِياسٌ "وَافُقِيّ } \\
& \text { harmonic number = عَدَدْ تَوافُقِيّ } \\
& \text { harmonic pencil =حْْمةٌ تَوافُقِيَّة } \\
& \text { harmonic points = نُقْطَنانِ تَو أُقِقيَّان } \\
& \text { harmonic progression = مُتو الِيةُّ تَو افُقِيَّة } \\
& \text { harmonic ratio = نسْبٌة تَو افُقِيَّة } \\
& \text { harmonic sequence = مُتَالِيةٌ تَو افُقَيَّة } \\
& \text { harmonic series = مُتَسَلْسِلٌّ تَوافُقِيَّة } \\
& \text { harmonic synthesis =ترْكيبٌ تَوافُقِيّ } \\
& \text { harmonic system of points = مَنظومةُ نقاطِ تَوافُقِيَّة } \\
& \text { وَسَطٌ هُنْدَسِيِّ تَو افُقِيّيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Harnack's principle = مَبْدُاًُ هارْنَك } \\
& \text { Harshad number = عَدَدُ هارْشاد } \\
& \text { Haruki's theorem =مُرْهْنَةُ هاروكي } \\
& \text { Hasse diagram = مُخَطَّطُ هاسي } \\
& \text { Hausdorff axioms = مَوْوعاتُ هاوسْدورْف } \\
& \text { Hausdorff distance = مسافُةُ هاوسْدورْفُ } \\
& \text { Hausdorff paradox }=\text { مُحِيِّرةُ هاوسْدورْفُ } \\
& \text { Hausdorff space = فَضاءُ هاوسْدورْف } \\
& \text { haversine = نصْنُ مُتَمِّم جَيْبِ التَّمام } \\
& \text { heart surface = سَطْحٌ قَلْبِيّ } \\
& \text { Heaviside step function = دالَّةُ هيفيسايْد الدَّرَجِّيَّة } \\
& \text { Heaviside unit function = دالُّةُ الوَحْدةِ لِهيفيسايْدِ } \\
& \text { hectogon = مُضَلَّعٌ مِئُوِيّ } \\
& \text { hei function = دالْةُ هاي } \\
& \text { height }=\text { ارتفاع } \\
& \text { Heine's theorem =مُرَهْهنُةُ هاينه }
\end{aligned}
$$

$$
\begin{aligned}
& \text { helicoid = سَطْحٌ لَوْبَبيّ } \\
& \text { helix = لَوْبَب }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Helly's theorem = مُبْرْهَنُة هيلي } \\
& \text { Helmholtz equation = مُعادَلُةُ هِلْمْهُوْتْز } \\
& \text { مُبَرْهَنُةُ هِلْمْهُ ولْنز } \\
& \text { hemicycle = نصْفُ دائِرة } \\
& \text { hemisphere = نصْفُ سَطْح كُرة } \\
& \text { hemispheroid = نصْنُ مُجَسَّمُ كُرُوِيّ } \\
& \text { hendecagon = مُضَلَّعٌ أحَحَ عَشَرِيّ } \\
& \text { hendecahedron = مُتَعِدِّدُ وُجوهٍ أَحَدَ عَشَرِيّ } \\
& \text { heptacontagon = مَضَلَّعٌ سَبْعِينيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { heptagon = مَضَلّْعٌ سُباعِيّ } \\
& \text { heptagonal number = عَدَدٌ سُباعِيّ } \\
& \text { heptagonal triangle = مُتَّثْ سُباعِيّ } \\
& \text { heptagram =نَجْمٌّ سُباعِيَّة } \\
& \text { heptahedral graph = يَيانُ سُباعِيِّ وُجوه } \\
& \text { heptahedron = مُتَعَدِّدُ وُجوهٍ سُباعِيّ } \\
& \text { heptakaidecagon = مَضَلَّعٌ سَبْعَ عَشْرْ } \\
& \text { heptomino = دومينو سُباعِيّ } \\
& \text { her function = دالَّةُ هير } \\
& \text { Hermit point }=\text { نُقْطُُ هِرْمِت } \\
& \text { Hermite polynomials =حُوودِيَّاتُ هِرْمِت } \\
& \text { Hermite's differential equation = مُعادَلُة هِرْمِت النَّفَاضُلِيَّة } \\
& \text { Hermitian form = صيغةٌ هِرْمتيَّة } \\
& \text { Hermitian inner product }=\text { جُداءٌ داخِلِيٌّ هِرْمِتِيّ } \\
& \text { Hermitian kernel = نَواةٌ هِرْمِيَّة } \\
& \text { Hermitian matrix = مَصْفوفةٌ هِرْمِيتّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Hermitian scalar product }=\text { جُداءٌ سُلُمبيٌّ هِرْمِتِيّ } \\
& \text { Hermitian space = فَضاءٌ هِرْمِيتيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Hero's formula = صيغةٌ هيرو } \\
& \text { Hero's method =طَيقةُ هيرو } \\
& \text { Heron's formula = صيغةُ هيرون } \\
& \text { Heronian mean = وَسَطٌ هيرونيّ } \\
& \text { مُبَرْهَنُةُ هسِّه } \\
& \text { Hessenberg matrix }=\text { مَصْفو فقُة هِسِنْبِرْ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { heuristic method = طَريقةُ اسْتِكْشافِّيَّةُ } \\
& \text { hexacontagon = مُضَلُّعٌ سِتِّنيّيّ } \\
& \text { hexadecagon = مُضَلَّعٌ سِتَّ عَشْرِيّ مُصْيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { hexadecimal (adj) = سِتَّ عَشْرُيّ } \\
& \text { نظامُ الحَدِّ السِّتَّ عَشْرِيّ عيّ } \\
& \text { hexafoil = سُداسِيُّ الوُرُيْقات } \\
& \text { hexagon = مُضَلَّعٌ سُداسيّ (مُسَدَّس) } \\
& \text { hexagonal number = عَدَدٌ سُداسِيّ } \\
& \text { hexagonal prism = مَوْشورٌ سُداسِيّ } \\
& \text { hexagonal pyramid =هَرَمٌ سُداسِيّ سِّيّ } \\
& \text { hexagram = نَجْمةٌ سُداسِيَّة } \\
& \text { hexahedral graph = بَيانُ سُداسِيِّ وُجوه } \\
& \text { hexahedron = مُتْعَدِّدُد وُجوهٍ سُدانِيّ } \\
& \text { hexakaidecagon = مُضَلُّعٌ سِتَّ عَشْرِيّ } \\
& \text { hexomino = دومينو سُداسيّيّ } \\
& \text { higher arithmetic =عِلْمُ الحِسابِ العالي } \\
& \text { higher mathematics = الرِّياضيِياتُ العالِية }
\end{aligned}
$$

$$
\begin{aligned}
& \text { higher plane curve = مُنْحَنِ مُسْنَوِ عالي الدَّرَجَة } \\
& \text { highest common factor = العامِلُ المُشْتُرَكُّ الأُغْظَم } \\
& \text { Hilbert cube }=\text { مُحَعَّبُ هِلْبِرْت }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Hilbert singular integral = تَكامُلٌ شاذٌ لِهِلْبْتُ } \\
& \text { Hilbert space }=\text { فَضاءُ هِلْبِرْت } \\
& \text { Hilbert transform = مُحَوِّلُ هِلْبِرْت } \\
& \text { مُمَرْهنَةُ القاعِدةِ لِهِلْبُتْتِ } \\
& \text { Hilbert's paradox = مُحِيِّرةُ هِلْبِرْت } \\
& \text { Hilbert's problems = مُسائِلُ هِبْبْتْتُ } \\
& \text { Hilbert's theorem = مُبرْهَنُةُ هِلْبرْت } \\
& \text { Hilbert-Schmidt theory = نظَرِيَّة هِلْبِرْتشْنْميت } \\
& \text { Hill's differential equation = مُعادَلُةُ هِلْ التَّفاضُلِيَّةُ } \\
& \text { hinged tessellation }= \\
& \text { فُسَيْفِساءُ مُتْتَفْصِلة } \\
& \text { hippopede = قَدُمُ الفَرَس }
\end{aligned}
$$

$$
\begin{aligned}
& \text { histogram = مُخَطَّطٌ دَرَجيّ (مُلْرَّج تَكْراريّ) } \\
& \text { Hjelmslev plane = مُسْتوي هِلْمْسْلِف } \\
& \text { مُبرَهْنَةُ أوين } \\
& \text { Hölder condition =شَرْطُ هولْدَرَ } \\
& \text { Hölder integral inequality = مُتبَاينةُ هولْدَر في النَّكامل } \\
& \text { Hölder means }=\text { أوْساطُ هولْدَر } \\
& \text { Hölder sum inequality = مُتَباينةُ هولْدَر في الجَمْعْع } \\
& \text { Hölder summation }=\text { جَمْعُ هولْدَر } \\
& \text { hole }=\text { تَقْب } \\
& \text { holomorphic function = دالْةٌ هولومورْفِيَّة } \\
& \text { holomorphic map = تَطْبيقٌ هولومورفيّ } \\
& \text { holonomic function = دالَّةٌ هولونومِيَّة } \\
& \text { homeomorphic spaces = فَضاءانِ مُتصصاكِلان (هوميومور فيَّان) } \\
& \text { homeomorphism =تصاكُل } \\
& \text { homogeneity =تَجانُس } \\
& \text { homogeneous (adj) = مُتَجانس } \\
& \text { إحداتِيَّاتٌ مُتْجانسة } \\
& \text { homogeneous equation =مَعادَلّةٌ مُتَجانِسة } \\
& \text { homogeneous function = دالَّةٌ مُتَجانسة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { homogeneous numbers = عَدَدانِ مُتَجانسان } \\
& \text { homogeneous polynomial = حُدورِيَّةٌ مُتَجانسِة } \\
& \text { homogeneous space =فَضاءٌ مُتَجانس } \\
& \text { homogeneous transformation =تَحْويلٌ مُتَجانس مُسِسْس } \\
& \text { homographic transformations = تَحْويلاتُُ مُجانسيَّة } \\
& \text { homographic transformations = تَحْويلاتُ هوموغْرِ افِيَّة } \\
& \text { homology group = زُمْرةٌ هومولوجيَّة هيَّة } \\
& \text { homology theory = نَظَريَّةُ المومولوجيا } \\
& \text { homomorphism = تَشاكُل } \\
& \text { homomorphism theorem =مُبرْهَنُة التَّشاكُّل }
\end{aligned}
$$

$$
\begin{aligned}
& \text { homothetic center = مَرْكزُ التَّحاكي } \\
& \text { homothetic curves = مُنحَنياتٌ مُتَحاكِية } \\
& \text { homothetic figures = أشكالٌ مُتَحاكِية مُحْ } \\
& \text { homothetic ratio = نسْبُةُ التَّحاكي } \\
& \text { homothetic transformation =تَحْ يلٌ مُتَحاكٍ } \\
& \text { homothetic triangles = مُثَلّْثاتٌ مُتَحاكِية } \\
& \text { homothety }=\text { تَحاكٍ } \\
& \text { homotopy = هوموتوبيا } \\
& \text { homotopy group = زُمْةُ هوموتوبيَّة } \\
& \text { homotopy theory =نَرِيَّةُ الهوموتوبيا وريبة } \\
& \text { horn angle = } \\
& \text { Horner's method = طَيقةُ هورْنر } \\
& \text { Horner's rule }=\text { قاعِدةُ هورْنر } \\
& \text { horse fetter = قَيْدُ الفَرَس } \\
& \text { Householder's method = طَ يقُُ هاوسْهولْدُرَ } \\
& \text { Hughes plane }=\text { مُسنتوي هيوز } \\
& \text { Hurwitz equation = مُعادَلُّةُ هورْمِفتز } \\
& \text { Hurwitz polynomial =حُدو دِيَّةُ هورْفْتِزْ } \\
& \text { Hurwitz's criterion = مِعْيارُ هورْفِنْز }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Huygens' approximation }=\text { تَقْريبُ هيغِنْز } \\
& \text { صuygens'formula }=\text { صيغُّ هيغنز } \\
& \text { hyperbola }=\text { قَطْعٌ زائِد (هُذْلول) } \\
& \text { hyperbolic cosecant = قاطِعُ التُّمامِ الزَّأَبِدِيّ } \\
& \text { hyperbolic cosine = جَيْبُ التَّمامِ الزَّأِئِيّيّ } \\
& \text { ظِلُّ التَّمامِ الزَّآِئِيّ } \\
& \text { hyperbolic cylinder = أُسطُو انةٌ زائِئِيَّة الُّئّ } \\
& \text { hyperbolic differential equation = مُعادَلْةٌ تَفَاضُلِيَّةٌ زائدِيَّةٍ } \\
& \text { دوَوالُ زائِدِيَّة } \\
& \text { hyperbolic geometry = المَنْدَسُُ الزَّأِئِيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { hyperbolic helicoid = سَطْحٌ لَوْبَبٌّ زائِدِيّ } \\
& \text { hyperbolic logarithm = لُغارِتْمٌ زائِدِيّ } \\
& \text { مُمُسَسَّمٌ مُكافِئُ زائِدِيّ } \\
& \text { hyperbolic point }=\text { نُقْطٌّ زائِدِيَّة } \\
& \text { hyperbolic Riemann surface }=\text { سَطْحُ ريمان الزَّائِدِيّ زيّةِّ } \\
& \text { قاطِعٌ زائِدِيّ } \\
& \text { hyperbolic sine }=\text { جَيْبٌ زائِدِيّ } \\
& \text { hyperbolic space }=\text { فَضاءٌ زائِدِيّ زِّيّ } \\
& \text { hyperbolic spiral }=\text { حَزْونٌ زائِدِيّ } \\
& \text { hyperbolic tangent }=\text { ظِلٌّ زائِدِيّ زنِّيّ } \\
& \text { hyperbolic type }=\text { نَمَطٌ زائِلِيّ } \\
& \text { مُجَسَّمٌ زائِدِيّ } \\
& \text { hyperboloid of one sheet =مُجَسَّمٌ زائِدِيٌّ وَحيدُ الفَرْع } \\
& \text { مُجَسَّمٌ زائِدِيّ دَوَرانِيّ } \\
& \text { hyperboloid of two sheets = مُجَسَّمٌ زائِدِيٌّ ثُنائِيُّ الفَرْع } \\
& \text { hypercircle method = طَيقةٌ فَوْقَ دائِريَّة } \\
& \text { hypercomplex number =عَدَدٌ فَوْقَ ععَدِيّ } \\
& \text { مَنْظومةٌ فَوْقِ عُقَدِيَّة } \\
& \text { hypercube }=\text { فَوْقَ مُكَعَّبُبِ } \\
& \text { hyperellipse }=\text { فَوْقَ قَطْع ناقِصٍ } \\
& \text { hypergeometric distribution }=\text { تَوْزيعٌ فَوْقَ هَنْدَسِيّ } \\
& \text { دوالَّةٌ فَوْقِ هَنْدَسِيَّة } \\
& \text { hypergeometric series =مُتَسَلْسِلةٌ فَوْقَ هَنْدَسِيَّة } \\
& \text { hyperplane = فَوْقَ مُسْنَوٍ } \\
& \text { hyperplane of support =فْقَ مُسْتْ لِحامِل } \\
& \text { hyperreal numbers = أعدادٌ فَوْقَ حَقيقِيَّة يُّ } \\
& \text { hyperspace = فَوْقَ فَضاء } \\
& \text { فَوْقَ كُرة ورَ } \\
& \text { hypersurface }=\text { فَوْقَ سَطْح } \\
& \text { فَوْقَ حَجْم }
\end{aligned}
$$

$$
\begin{aligned}
& \text { hypocycloid = دُحْروجٌ دانحِلِيّ } \\
& \text { hypoellipse = تَحْتَ قَطْعٌ ناقِصِ } \\
& \text { وypotenuse } \\
& \text { hypothesis = فَرْضِيّة } \\
& \text { hypothesis testing = اختِبارُ الفَرْضِيَّاتِ } \\
& \text { دُحْروجٌ عامٌّ دانِلِيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { I } \\
& \text { صا صِيُغ ابْنِ يونُس } \\
& \text { icosagon = مُضَلَّعٌ عِشْرونيّ مِّنِّ } \\
& \text { icosahedral group = زُمْرةٌ عِشْرونيَّة } \\
& \text { icosahedron =عِثْرونيُّ وُجوه } \\
& \text { مُتَعَدِّدُ وُجوهٍ عِشْرونيّيّ } \\
& \text { ideal }=\text { مثناكيّي } \\
& \text { ideal element }=\text { عُنصرُ مِنثالِيّ } \\
& \text { ideal line = خَطٌّ مِناليّ } \\
& \text { ideal point = نُقْةٌ مِثالِيَّة } \\
& \text { ideal theory = نَظَرِيَّةُ المِنالِيَّات }
\end{aligned}
$$

$$
\begin{aligned}
& \text { idempotent (adj) = مُراوِح حرِّ } \\
& \text { مَصْفوفةٌ مُراوحِة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { نبْنَةٌ مُراوِحة } \\
& \text { مُطابَقة (مُتطابِقة) } \\
& \text { عُنْصُرٌ مُحايد } \\
& \text { دالَّةُ مُطابِقة } \\
& \text { identity mapping = تَطْبيقٌ مُطابِق } \\
& \text { identity matrix = مَصْفوفةٌ مُحايدة } \\
& \text { identity operator = مُؤَّرّ مُحاِيد مُحايد } \\
& \text { ill-posed problem = مَسْألةٌ مُعْتَلَّةُ الصِّياغةِ } \\
& \text { illusory correlation = ارتباطٌّ وَهْمِيّ } \\
& \text { image }=\text { صورة } \\
& \text { imaginary axis = مِحْورٌ تَخَيُّلُيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { imaginary number =عَدُدٌ تَخَيُّلِيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { imaginary point }=\text { نُقْطةٌ تَخَيُّيلَيَّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { كَمِيَّةٌ تَخَيُلِيَّة } \\
& \text { imaginary roots }=\text { جُذوررٌ تَخَيُيلَيَّة } \\
& \text { imaginary unit = الوَحْدُ النَّخَيُليِّيَّ } \\
& \text { imbedding }=\text { طَمْر } \\
& \text { immersion = غَمْر } \\
& \text { implication }=\text { اقْتِضضاء } \\
& \text { مُمفاضَلةٌ ضِمْنِيَّة (مُفاضَلَّةٌ مُسْتَتِرة) } \\
& \text { implicit function = دالّْةٌ ضِمْنَّنَّة } \\
& \text { implicit function theorem = مُبْهَنَةُ الدَّو الَّ الضِّنِّنَّةُ } \\
& \text { imply }(v)=\text { يَقْتُضي } \\
& \text { impossibility theorem =مُبَهْنَةُ اسْتِحالة } \\
& \text { improper conic section = قَطْعْ مَخْروطِيٌّ مُعْتُلّ } \\
& \text { improper face = وَجْهُ مُعْتَلّ (وَجْهُ غَيْرُ فِعْلِيّ) } \\
& \text { كَسْرٌ مُعْتَلّ (كَسْرٌ غَيْرُ فِعْلِيّ) (} \\
& \text { improper integral = تَكمُملِّ مُعْتَلِّ } \\
& \text { improper point = نُقْطٌ مُعْتَّةُ } \\
& \text { مَسْنَلةٌ مُعْتَنَّةُ الصِّياغة } \\
& \text { impulse function = دالَّةٌ دَفْفِيَّة } \\
& \text { incenter = مَرْكَزُ دائِرةٍ دانِلِيَّة } \\
& \text { incidence = وُقوع (تَلاق - لِقاء) } \\
& \text { دالْكُة الوُقوع } \\
& \text { incidence matrix =مَصْفو فةُ الوُقوع ع } \\
& \text { دائرِةٌ داخِلِيَّة } \\
& \text { inclination }=\text { مَيْل } \\
& \text { inclined plane = مُسْنُ مائِل } \\
& \text { inclusion relation = عَلاقةُ احْنِواء } \\
& \text { inclusion-exclusion principle = مَبْدَأُ الاحْنِوَاء والإِقْصَاء عَاء } \\
& \text { inclusive disjunction = فَصْلٌ لاإقْصائي" (فَصْلٌ احْْنِوائي") } \\
& \text { incommensurable numbers = عَدَدانِ لامْتُقَايسان } \\
& \text { incompatible equations = مُعادَلاتٌ غَيْرُ مُتْناسِقة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مُتُراجححاتٌ غَيْرُ مُتَناسِة } \\
& \text { incomplete beta function = دالْةُ بيتا غَيْرُ النَّامَّة } \\
& \text { incomplete elliptic integral = تَكامُلٌ ناقِصِيٌّ غَيْرٌ تامٌ } \\
& \text { incomplete gamma function = دالَّةُ غاما غَيْرُ التَّامَّة } \\
& \text { incomplete induction = استِقْراءٌ غَيْرُ تامٌ } \\
& \text { incomplete Latin square =مُرَبُعٌ لاتينيٌّ غَيْرُ تامٌ } \\
& \text { inconsistent axioms = مَوْضوعاتٌ لامُتُّسِقة } \\
& \text { inconsistent equations = مُعادَلاتٌ لامُتّسقة } \\
& \text { مُتُراجححاتٌ لامُتَّسقة } \\
& \text { increasing function = دالَّةٌ مُتَّ ايدة } \\
& \text { مُتَتالِيةُ مُتْزَ ايدة } \\
& \text { increment =تَزايُد } \\
& \text { increment of a function =تَز يُدُ دالَّة } \\
& \text { indefinite integral = تَكامُلْ غَيْرُ مُحَدَّد } \\
& \text { indegree = دَرَجُةُ الدُّخول }
\end{aligned}
$$

$$
\begin{aligned}
& \text { independent axiom = مَوْضوعةٌ مُسْنقِلَّةُ } \\
& \text { مُعْادَلاتٌ مُسْنَقِلَّة } \\
& \text { independent events = أحداثٌ مُسْتَقِلَّة } \\
& \text { independent functions = دَوالُّ مُسْتَقِلَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { independent sets =مَجْموعاتٌ مُسْتَقِلَّة } \\
& \text { independent variable }=\text { مُتَغيرِّ مُسْتْقِلِّ } \\
& \text { رُؤوسٌ مُسْتَقِلَّة } \\
& \text { مُعْادَلٌْ غَيْرُ مُعيَّنة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { indeterminate forms = صِيَغ عَدَمِ التَّعْيّن } \\
& \text { index = أُسَ، دَّيلِ الْ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { index number = عَدَدٌ دَليلِيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { index of a radical = دَليلُ البَذْر } \\
& \text { دَليلُ زُمْرٍ جُزْئِيَّة } \\
& \text { دَلِيلُ الدِّقَّة } \\
& \text { مَمَجْموعةُ أدِلَّةٍ } \\
& \text { index theory = نَظَرِيَّة الأدِلَّة } \\
& \text { indicator }=\text { مُوَّشِّرِ } \\
& \text { دالَّةُ مُوَشِّرات } \\
& \text { indicial equation = مُعادَلْةٌ دَيلِيلَّة } \\
& \text { indirect proof }=\text { بُرْهانٌ غَيْرُ مُباشَر }
\end{aligned}
$$

$$
\begin{aligned}
& \text { indirect variation = تَيُرُّر" غَيْرُ مُباشَ } \\
& \text { indiscrete topology = الطبولو جيا غَيْرُ المُتقَطِّعة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { induced orientation = تَوْجيةٌ مُحْدَثَ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { induced topology = طبولوجيا مُحْدَثَة } \\
& \text { مَوْضوعةُ الاسْنِقْرَاء }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مُتُباينة (مُترَتراجحة) } \\
& \text { inessential mapping = تَطْبيقٌ لاأساسييّ } \\
& \text { infimum = الحَدُّ الأدنْى (أكْبْرُ قاصرِ) } \\
& \text { infimum limit = النّهايةُ الدُّنُّا }
\end{aligned}
$$

$$
\begin{aligned}
& \text { infinite discontinuity }=\text { انْقِطاعٌ لانهائِيّي } \\
& \text { infinite extension = تَمْديدٌ غَيْرُ مُنتْهٍ (تَمْديدٌ لانِهَائِيّ) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { infinite hotel paradox = مُحِيِّةُ الفُنُدُقُ اللانْهائِي" }
\end{aligned}
$$

$$
\begin{aligned}
& \text { infinite population = مُجْتَعَعٌ إحْصائِيٌّ غَيْرُ مُنْتُهٍ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مُتُسَلْسلةٌ غَيْرُ ُمْنتَيةَ (مُتَسَلْسِلةٌ لانْهَائِيَّة) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { infinitesimal analysis = تَحْليلُ الصَّغائِر } \\
& \text { infinitesimal calculus =حُسْبُنُ الصَّغائِر }
\end{aligned}
$$

$$
\begin{aligned}
& \text { infinity }=\text { اللانهاية } \\
& \text { inflection }=\text { انْعِطاف } \\
& \text { inflection point = نُقْطةُ انْعِطاف } \\
& \text { inflectional tangent =مُمسٌّ انْعِطافِيّ } \\
& \text { inflexion = انْعِطاف } \\
& \text { inflow = جَرَيانٌ داخِل (جَرَيانٌ نَحْوَ الدَّاخِل) } \\
& \text { information = مُعْلومات } \\
& \text { information theory = نَظَريَّةُ المَعْلومات }
\end{aligned}
$$

$$
\begin{aligned}
& \text { inhomogeneous coordinates = إحداثِيَّاتٌ لامُتُجانسة } \\
& \text { initial line = خَطٌ ابْتِدْائِيّ الِّيّ } \\
& \text { initial segment }=\text { قِطْعٌة ابْتِدائِئَّة } \\
& \text { مَسْمْألةُ القِيَمِ الابْتِدائِيَّة } \\
& \text { initial-value theorem = مُبرْهَنُةُ القيمةِ الأبْتِدائِيَّة } \\
& \text { injection = تَطْبِيٌٌ مُتبَاين } \\
& \text { injective mapping =تَبْبيقٌ مُتَباين } \\
& \text { inner automorphism = تَذا كُلُ دانحِلِيّ } \\
& \text { inner function = دالَّةٌ داخِلِيَّة } \\
& \text { inner Jordan content =مُحْتَوَى جورْدان الدَّاخِلِيّ } \\
& \text { قِيّاسٌ دانِلِيّ }
\end{aligned}
$$

```
            جrداءٌ دانحِليّي"
    inner product of two tensors = جُدَاءٌ دَاخحِليٌّ لِمُوترِّيْن)
```



```
            inscribed polygon = مُض⿴囗⿱一一大殳, مُحاط
```



```
            insoluble (adj) = غُر⿱夕夕㐄
            insolvable (adj) = غَيْرُ
```



```
            integral = تكامٌ
        integral calculus = حُسْبانُ التُكامُل
```



```
#㇒⿻丷木)
```



```
    integral extension = تَمْديدّ صَحِح
```


$$
\begin{aligned}
& \text { integral map = تَطْيقُ صَحيح }
\end{aligned}
$$

$$
\begin{aligned}
& \text { integral part }=\text { جُزْء صَحَيح } \\
& \text { integral polynomial =حُدودِيَّةٌ صَحيحة } \\
& \text { integral test = اختِبارٌ تَكامُلمِيّ صُحِّ } \\
& \text { integral transform = مُحوِّلٌ تَكامُلِيّي" } \\
& \text { integral transformation = تَحْوِلٌ تَكامُلِيّ } \\
& \text { integrally closed ring =حَلَقٌةٍ مُغْلَةُ صَحْيحَّا } \\
& \text { integrand }=\text { المُكامَل } \\
& \text { integrating factor = عامِلُ تَكْميل } \\
& \text { integration = مُكامَلة } \\
& \text { integration by parts = مُكامَلُّ بالتَّجْزِئةُ } \\
& \text { integration constant }=\text { ثابنةُ المُكامَلةُة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { interaction = تَآُرُ (تَاعُل) } \\
& \text { intercept = نُقْطُ تَقاطُع، جُزْءْ مَحْصور } \\
& \text { interior }=\text { داخِل } \\
& \text { interior angle }=\text { زاويةٌ دانخِليَّة } \\
& \text { interior content = مُحْتَوَى داخِلِيّ } \\
& \text { interior Jordan content = مُحْتَوَى جورْدان الدَّاخِلِيّ } \\
& \text { قِيّاسٌ داحِلِيّ } \\
& \text { interior point = نُقْطةٌ داخِلِيَّة } \\
& \text { مُبرْهَنَةُ القيمةِ المُتوَسِّطِّة } \\
& \text { رَأْسٌ مُتوَسِّط } \\
& \text { internal and external division = تَقْسيمٌ دَاخِلِيُّ وَخَارِجيّ } \\
& \text { internal division = تَقْيمٌ داخِلِيّ } \\
& \text { internal operation = عَمَلِّةٌة داخِلِيَّة } \\
& \text { internal path length = طولُ المَسارِ الدَّآحِلِيّ } \\
& \text { نُقْطُةُ التُّشابُبْ الدَّاخِلِيّيّ } \\
& \text { internal tangent }=\text { مُماسٌّ داخِلِيّي اليُيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { internally tangent circles = دائِرَتانِ مُتْماسَّتانِ داخِليًِّا } \\
& \text { interpolation = استِكْمالٌ داخِلِيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { intersection = تَقُطع } \\
& \text { intersection graph = بَيانُ تَقَطُع } \\
& \text { interval = مَجال } \\
& \text { interval estimate = تَقْديرُ مَجال } \\
& \text { interval of convergence = مَجالُ التَّقارُب } \\
& \text { interval of existence = مَجالُ وُجود } \\
& \text { intransitive relation = عَلاقةٌ لامْتُعَدِّيِّة } \\
& \text { intrinsic equations of a curve = الُعبادَّكَانِ الذَّأِتِّنَانِ لُمْحَنٍ } \\
& \text { intrinsic geometry of a surface = هَنْدَسٌْ ذاتِيَّةٌ لِسَطْحِ } \\
& \text { intrinsic property = خاصيّةٌ ذاتِيَّة } \\
& \text { intrinsic property of a curve = خاصِيَّةٌ ذاتِيَّةٌ لِمُنْحَنِّ } \\
& \text { intrinsic property of a surface = خاصِيّةٌ ذاتِيَّةٌ لِسَطْحَّ } \\
& \text { invariant }=\text { لامُتْغَيِّرِ } \\
& \text { invariant function = دالَّةٌ لامُتْفَيِّرة } \\
& \text { invariant measure }=\text { قِياس" لامْتُغَيِّرِ } \\
& \text { invariant property = خاصيَّةٌ لامُتْفَيِّرة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { inverse = عَكْس، مَقْلوب، نَظير } \\
& \text { inverse correlation = ارتباطُ عَكْسِيّ } \\
& \text { inverse cosecant = دالَّةُ قاطِع النَّمامِ العَكْسِيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مُمْنحَنيانِ مُتَعاكِسان } \\
& \text { inverse element = عُنْصُرٌ مُعاكِس } \\
& \text { inverse function = دالَّةٌ عَكْنِيَّة } \\
& \text { مُبرْهَنُةُ الدَّالَّةِ العَكْسِيَّة }
\end{aligned}
$$

```
    Inverse hyperbolic function = دالْةٌ زائلِي\tilde{ّ}
            \mathrm{ inverse image = صورةٌ عَكْسيّة)}
        inverse implication = اقْتِضاءٌ عَكْسِيّ
        _nverse logarithm = 'مُقابلُ
            inverse matrix = مُصْفوفةٌ عَكْسيّة (مَقْلوبٌ مَصْفوفة)
```



```
        inverse permutations = تَبْديالانِ مُتعاكِسْسان
```



```
    inverse probability principle= = مبْدُ)
                        \mathrm{ nَناسُبٌ عَكْسِيّ }
            ~مقُلْبُ
            inverse relation = عَاققٌ عَكْسِّة)
            \mathrm{ داللُةُ القاطِع العُكْسِّة)}
```



```
            inverse substitution = تَعْويض" عَكْسِي
```



```
            inversely similar = متشابهانِ عَكْسيًّا
```



```
            inversion = تَعاكُس
            inversion center = مَرْزُزُ
            inversive geometry = الْنْدَسُ،ُ
            invertible (adj) = قَلوب (قابلٌ \لْقَلْب)
```



```
            involute = ناشِر (مُنْشَ)
            رُفْعٌ إلى قُوّة، ارتِداد (involution =
```


$$
\begin{aligned}
& \text { حَحٌٌُ أصَمُّ (حَدٌّ غَيْرُ مُنَطْقُ) } \\
& \text { irreducible element }=\text { عُنصرُ غَيْرُ خَزول } \\
& \text { مُعُدَدلّة غَيْرُ خَزولة } \\
& \text { rسَرْ غَيْرُ خَزول } \\
& \text { irreducible function = دالْةٌ غَيْرُ خَرُولة } \\
& \text { irreducible lambda expression =عِبارةُ لامْدَا غير خَزُولة } \\
& \text { irreducible module = مودولٌ غَيْرُ خَزول } \\
& \text { irreducible polynomial = حُدو دِيَّةٌ غَيْرُ خَرولة خَرولة } \\
& \text { irreducible radical }=\text { جَذْرٌ غَيْرُ خَزول } \\
& \text { مُوْتِّرٌ غَيْرُ خَزول } \\
& \text { irreflexive relation = عَلاقةٌ غَيْرُ انْعِكاسِيَّة عِّهُ } \\
& \text { حَقْلُ مُتَّجهاتٍ غَيْرٌ دَوَرانيّ } \\
& \text { isogon = مُضَلَّعٌ مُتَساوي الزَّوّايا } \\
& \text { isogonal conjugates = مُتر افِقاتٌ مُتَساويةُ الزَّوَايا }
\end{aligned}
$$

$$
\begin{aligned}
& \text { isogonal transformation = تَحْوِيلّ مُتُساوي الزُّوايا } \\
& \text { نُنْطُةٌ مُنْعزَلة } \\
& \text { isolated set = مَجْموعةٌ مُنْعَزْلة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { رَرَأْسٌ مُنْعْزِل } \\
& \text { isometric forms = صيغَتانٍ مُتُقايسَتان } \\
& \text { ورَرَةُة رَسْمٍ بَيانِيِّ مُتَقايسة } \\
& \text { isometric spaces = فَضاءانٍ مُتْقايسان } \\
& \text { isometry = تَقُسس } \\
& \text { صَفُنُ تَقايُس } \\
& \text { isomorphic graphs = بَيانانِ مُتماكِكالن } \\
& \text { isomorphic systems = مَنْوَمَتانِ مُتُماكِكِنَان } \\
& \text { isomorphism = }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مَسْألةُ النَّماكُل } \\
& \text { isoperimetric figures = أشكالٌ مُتَساويةُ المُحيط الُمكا } \\
& \text { مُتْبَاينةُ الُمحيطاتِ المُتساوِية } \\
& \text { isoperimetric point }=\text { نُقْطُّ الُمحيطاتِ الُمُتساوية } \\
& \text { مَسْألةُ المُحيطاتِ المُنتساوية المُتُ } \\
& \text { isosceles spherical triangle = مُنَّلْثٌ كُروِيٌّ مُتَسَاوي السَّاقَيْن } \\
& \text { isosceles trapezoid =شِبْهُ مُنْحَرِفٍ مُتَساوي السَّاقَيْن }
\end{aligned}
$$

$$
\begin{aligned}
& \text { iterated integral = تَكامُلْ تَكْراريّ الْ } \\
& \text { iterated series = مُتسَلْسْلةٌ تَكْراريَّة } \\
& \text { iteration =َكْرار } \\
& \text { iterative method = أُسلوبٌ تَكْرارِيّ } \\
& \text { إجر إئِيَّةٌ تَكْراريَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { J } \\
& \text { Jacobi canonical matrix = مَصْفوفةُ جاكوبي القانونِّةَ } \\
& \text { Jacobi condition =شَرْطُ جاكوبي انـيُ } \\
& \text { Jacobi equation = مُعادَلةُ جاكوبي جاكي } \\
& \text { Jacobi polynomials =حُدودِيَّاتُ جاكوبي } \\
& \text { Jacobi triple product }=\text { جُداءُ جاكوبي الثُلاثِيّيّي } \\
& \text { Jacobi's identity = مُتطابقةُ جاكوبي اكِئُ } \\
& \text { Jacobi's method =طَيقةُ جاكوبي } \\
& \text { مُبرْهَنُةُ جاكوبي } \\
& \text { Jacobi's transformations =تَوْيلاتُ جاكوبي } \\
& \text { Jacobian = يَعْقوبيّ } \\
& \text { Jacobian determinant = مُحَدِّدةٌ يُعْقوبيَّة } \\
& \text { دَوالُ إْهُليلجِيَّةٌ يَعْقو بِيَّةِ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Jacobian matrix = مَصْنوفةٌ يَعْقوبيَّة } \\
& \text { James' theorem =مُرْهَنُةُ جيمْسِ } \\
& \text { Japanese theorem = الُمبرْهَنُةُ اليابانِيَّة } \\
& \text { Jensen's inequality = مُتبايِنُُ جَنْسِن } \\
& \text { Jensen's theorem =مَرْهَهَنُ جنْسن جنُسن } \\
& \text { Jinc function = دالْةُ جَنْكُ } \\
& \text { Johnson circle = دائرة جونْسون } \\
& \text { مُبرْهَنَةُ جونْسون } \\
& \text { join = مُحَصِّلة، وَصْلر } \\
& \text { join-irreducible member = عُْصُرٌ غَيْرُ خَزُولٍ وَصْلًا (ضَمًّا) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { joint distribution = تَوْزيعٌ مُشْتُرَكَك }
\end{aligned}
$$

$$
\begin{aligned}
& \text { joint variation = تَغْيُرْ مُشْتْرَرَرْ } \\
& \text { Jordan algebra }=\text { جَبْرُ جورْدانرُ مُرْ } \\
& \text { Jordan arc =قَسُ جورْدان }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Jordan condition = شَرْطُ جوردان } \\
& \text { Jordan content = مُحْنَوَى جورْدان } \\
& \text { Jordan contour }=\text { مُحيطُ جورْدران } \\
& \text { Jordan curve }=\text { مُنحَني جورْدان } \\
& \text { Jordan curve theorem =مُرْهَنُةُ مُنْحَني جورْدان } \\
& \text { Jordan decomposition =تَفْريقُ جوردان جران } \\
& \text { Jordan elimination =حَذْفُ جورْدان } \\
& \text { Jordan factor = عامِلُ جورْدان } \\
& \text { صيغةُ جوردان } \\
& \text { Jordan inner measure = قِياسُ جورْدان الدَّآِلِيّ } \\
& \text { Jordan matrix }=\text { مَصْفوفةُ جورْدان } \\
& \text { Jordan measure }=\text { قِياسُ جورْدان } \\
& \text { Jordan outer measure = قِيُ جورْدان الخارِجيّ } \\
& \text { Jordan polygon =مُضَلَّعُ جورْدان } \\
& \text { Jordan product =جُداءُ جورْدان } \\
& \text { Jor مُتباينةُ جورردان } \\
& \text { Jordan-Hölder theorem =مُبرهَنُةُ جورْدَان-هولْدُرَ } \\
& \text { Josephus problem = مَسْألةُ جوزيفوس } \\
& \text { Joukowski transformation =تَحْ يلُ جو كوفْسْكُي حُوسِ } \\
& \text { Jourdain's paradox =مُحيِّةُ جورْدين } \\
& \text { Julia set =مَجْموعةُ جورُّيا } \\
& \text { jump }=\text { قَزْة } \\
& \text { jump discontinuity point }=\text { نُقْةُ انْقِطا عِ قافِز } \\
& \text { دالَّةٌ قافِزة } \\
& \text { Jung's theorem =مُبرْهَنُة يَنْغ }
\end{aligned}
$$

K

$$
\begin{aligned}
& \text { Kac matrix = مُصْفوفةُ كاك } \\
& \text { Kakeya problem = مَسْألةُ كاكيا } \\
& \text { مُنْحَني يدو كسس } \\
& \text { Kanizsa triangle = مُثُّلُ كُ كانيز } 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Kappa curve = مُنْحَني كاپا } \\
& \text { Kaprekar number = عَدَدُ كابْرِيكار }
\end{aligned}
$$

$$
\begin{aligned}
& \text { kei function = دالْةُ كايْ } \\
& \text { Kelvin functions = دالّنا كِلْفِن كا } \\
& \text { Kepler's folium = وُرَيْقُ كبلر كِلُنر } \\
& \text { kerfunction = دالَّهُ كير } \\
& \text { kernel = نَواة } \\
& \text { مُبرْهَنَةُ خينتْنين } \\
& \text { Kilroy curve =مُنْحَن كِلْروي } \\
& \text { kiss surface = سَطْحُ الثُُبْلة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Klein bottle = قارورةُ كْلاين } \\
& \text { Klein group = زُمْرةُ كلاين } \\
& \text { Klein's four-group = زُمْةُ كلاين الرُّباعِيَّة } \\
& \text { مَسْنألةُ حَقيبةِ الظَّهُ كُرْ } \\
& \text { knot = عُقْدة } \\
& \text { مُنْحَني الُُقْدة } \\
& \text { knot theory = نَظَرَّةُ الُُقَدَ الِّدُ } \\
& \text { Koch curve =مُنحَني كوخ } \\
& \text { Koebe function = دألّةُ كوبي كري } \\
& \text { مُتُراجحاتُ كولْموغورف ك }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Kolmogorov space = فَضاءُ كوولْموغوروف }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Krein-Milman property = خاصِيَّةُ كْراين ميلْمان }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Kronecker's lemma = تَوْطِئُةُ كْرونيكرَ كريكر } \\
& \text { Krull theorem =مُرْهَنُةُ كْرُل } \\
& \text { Kummer relation = عَلاقةُ كومَر كرُ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Kummer's test = اختِبارُ كومرَ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Kureppa number =عَدَدُ كوريبا } \\
& \text { kurtosis = تَفْطُحُ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { L } \\
& \text { La Hire's theorem =مُبرْهَنُةُ لاهير } \\
& \text { label (v) = يَسِمُ (يُعَلِّمُ) } \\
& \text { labeled (labelled) graph =بَيانٌ مَوْسوم (بَيَنْنُ مُعَلّْم) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { lacunary power series = مُتَسَلْسِلةُ قُؤى فَجْوْيَّة (ذاتُ فَجَوْ }
\end{aligned}
$$

> ladder graph = بَيانٌ سُلّْمِيّ
> lag correlation = ارِباطُ التَّأخُُرُ
> Lagrange coefficients =مُعامِلاتُ لاغْرانْج
> Lagrange form of the reminder = صيغةُ لاغْرانج لِلْبَا
> Lagrange inversion theorem =مُرْهَنُةُ الَعكْسِ لِلاغْرَاْنُج
> Lagrange multipliers = مَضاريبُ لاغْرانْج

$$
\begin{aligned}
& \text { Lagrange's linear equation =مُعادَلُةُ لاغْرانْج الخَطِّيّة }
\end{aligned}
$$

> Lagrange's equation $=$ مُعادَلُّةُ لاغْرانْج
> Lagrange's formula $=$ صيغةُ لاغْرانج
> Lagrange's identity = مُتطابقةُ لاغْرانج
> Lagrange's inequality =مُتباينةُ لاغْرانْج
> Lagrange's lemma = تَوْطِئُ لاغْرانْع
> Lagrange's theorem =مُبْرَنَةُ لاغْرانج
> Laguerre functions = دَوالُّ لاغِيْر
> Laguerre polynomial =حُدو دِيَّةُ لاغِيْر لا
> Laguerre's differential equation = مُعادَلُةُ لاغيرْ التَّفاضُلِيَّة
> Laisant's recurrence formula = صيغةُ ليسانْت الارتِدادِيَّة
> Lakshmi star = نَجْمُةُ ثُمانيَّة

$$
\begin{aligned}
& \text { lambda }=\text { لامْدا } \\
& \text { lambda function = دالَّةُ لامْدا }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مُبرْهَنُةُ لامْبرت } \\
& \text { Lamé curves =مُنْحَنياتُ لاميه } \\
& \text { Lamé functions = دَوالُ لامِيْه } \\
& \text { Lamé polynomials =حُدودِيَّاتُ لامِيْه } \\
& \text { Lamé wave functions = دَوالُّ لامِيْه المَوْجِيَّة } \\
& \text { Lamé's differential equation = مُعادَلةُ لامِيهُ التَّفاضُلِيَّةَ } \\
& \text { مُعادَلاتُ لاميه } \\
& \text { Lamé's relations = عَلاقاتُ لاميه لاريه } \\
& \text { صاamina }=\text { صَفيحة } \\
& \text { Lancret's theorem =مُبرْهنةُ لانْكْريت }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Lanczos's method = طَريقُُ لانْتشوز لا } \\
& \text { Landau symbols =رَمْزا لانْداو } \\
& \text { Landau's problems = مسائلُ لانداو لانداو } \\
& \text { Landau's theorem =مُبَهْنةُ لانْداو } \\
& \text { Landen's identity = متطابقةُ لانْدَن } \\
& \text { language theory = نَظَرِّةُ اللُّغات } \\
& \text { Laplace equation = مُعادَلَةُ لاٌْْاسِّ } \\
& \text { Laplace operator = مُؤَتِّرُ لابْلاس لانِ } \\
& \text { Laplace transform = مُحَوِّلُ لاْْْلاس لانُس } \\
& \text { Laplace's expansion = نَشْرُ لاپْلاس لوس } \\
& \text { Laplacian = لابْلاسيّيّ لانِّ } \\
& \text { latent root }=\text { جَذْرٌ كامِنٌ (جَذْرٌ لاطٍ) } \\
& \text { مُمُّجهٌُ كامِن (مُتَّجُّ لاطِّ) } \\
& \text { lateral area = مساحةٌ جانبيَّة } \\
& \text { lateral face = وَجْةٌ جانِبيّ } \\
& \text { Latin rectangle }=\text { مُسْتَطيلٌ لاتينيّ حِيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Latin square = مُرَّعٌع لاتينيّ } \\
& \text { lattice = شَبيكة (شَبَكة) } \\
& \text { latus rectum =وَسيطُ قَطْع (وَتَرُ بُؤْرِيٌّ عَمودِيّ) } \\
& \text { Laurent expansion = نَشْرُ لوران } \\
& \text { Laurent series = مُتَسَلْسلةُ لوران لوران } \\
& \text { law = قانون } \\
& \text { law of averages = قانونُ المُتوَسِّطات } \\
& \text { law of contradiction = قانونُ التَّناقُض (قانونُ الخُلْف) } \\
& \text { law of cosines = قانونُ جُيوب التَّمام } \\
& \text { law of exponents = قانونُ الأُسُس } \\
& \text { law of growth = قانونُ التُّمُو" } \\
& \text { law of large numbers = قانونُ الأعْدادِ الكَبيرة } \\
& \text { law of quadrants = قانونُ الأرْباع } \\
& \text { law of signs = قانونُ الإشارات } \\
& \text { law of sines = قانونُ الجُيوب ألارب } \\
& \text { law of species = قانونُ الأنُواع } \\
& \text { law of tangents = قانونُ المُماسَّات (قانونُ الظِّال) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { law of the mean = قانونُ المُتوَسِّطُ (قانونُ الوَسَطم) } \\
& \text { leading coefficient = مُعامِلٌ رَئيسيّ الِّطيّ } \\
& \text { leading diagonal }=\text { قُطْرْ رَئيسِيّ ريّيّ } \\
& \text { leaf }=\text { ورَقَقة } \\
& \text { leaf of Descartes = ورَقةقُ ديكارت } \\
& \text { least common denominator = المَامُ المُشْتَرَكُُ الأصْغَرُ } \\
& \text { المُضاعَفُ المُشْترَكُُ الأصْغَرُ } \\
& \text { least integer function = دالَّةُ أُصْفر عَدَدٍ صَحِح } \\
& \text { least residue = الرَّاسِبُ (الباقي) الأصْغَر }
\end{aligned}
$$

$$
\begin{aligned}
& \text { least-squares method = طَيقةُ الُُرَبَّعاتِ الصُّغْرُى }
\end{aligned}
$$

$$
\begin{aligned}
& \text { least-upper-bound axiom = مَوْضوعةُ الحَدِّ الأعْلَى } \\
& \text { Lebesgue decomposition = تَفْريقٌ لوبيغ الاعِّ } \\
& \text { Lebesgue exterior measure =قِياسُ لوبيغ الحخارِجيُّ } \\
& \text { Lebesgue identity = مُتطابقةُ لوبيغ } \\
& \text { Lebesgue integrable (adj) = كَمُولٌ وَفْقَ لوبيغ } \\
& \text { Lebesgue integral = تَكامُلُ لوبيغ } \\
& \text { Lebesgue interior measure = قِياسُ لوبيغ الدَّاخِليُّ } \\
& \text { Lebesgue measure = قِياسُ لوبيغ } \\
& \text { Lebesgue number = عَدَدُ لوبيغ } \\
& \text { Lebesgue outer measure =قِياسُ لوبيغ الخارِجيُّ } \\
& \text { Lebesgue's density function = دالَّةُ الكَثافةِ لِلوبيغ } \\
& \text { Lebesgue's density theorem = مُبرْهَنُةُ الكَثافةِ لِلوبيغ } \\
& \text { Lebesgue's theorem = مُبَهَهَنُة لوبيغ } \\
& \text { Lebesgue-Stieltjes integral = تَكامُلُ لوبيغ- سْتيلْتْجِس مسِيغ } \\
& \text { left coset = مَجْموعةٌ مُصاحِبةٌ من اليَسار } \\
& \text { left half-plane = نصْنُ المُستْوي اليَساريّ } \\
& \text { left ideal = مِثالِيٌّ يَسارِيّ } \\
& \text { left identity = مُحايدٌ من اليِسار } \\
& \text { مَقْلْوبٌ من اليُسار } \\
& \text { left module = مودولٌ يَساريّ } \\
& \text { left-continuous function = دالَّةٌ مُسْتَمِرَّةٌ من اليَسار } \\
& \text { left-hand derivative = مُشْتْقٌٌ من اليَسار } \\
& \text { left-hand limit = نهايةٌ من الِيسار } \\
& \text { left-handed coordinate system = منظومةٌ إحْدَاثِئٌّةٍ يَساريَّة } \\
& \text { left-handed curve = مُنْحَنٍ يَسارِيّ } \\
& \text { left-invertible element = عُنصرُرٌ قَلُوبٌ من اليَسار } \\
& \text { leg = ضِلْعٌ قائم (ساق) } \\
& \text { Legendre differential equation = مُعادَلُّلُ لوجانْدر التَّفاضُلِّيَّة) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Legendre function = دالَّةُ لوجانْدُر لـُرِ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Legendre polynomials =حُدودِيَّاتُ لوجانْدر } \\
& \text { Legendre relation = عَلاقةُ لوجانْدر لو } \\
& \text { Legendre symbol = رَمُز لوجانْدر } \\
& \text { Legendre transform = مُحَوِّلُ لو جانْـر } \\
& \text { Legendre transformation =تَحْوِلُ لوجانْدُرْ لُمرِ } \\
& \text { Legendre's identity = مُتطابقةُ لوجانْدَرُ لو } \\
& \text { Leibnitz formula = صيغةُ لايبْنْز }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Leibnitz series = مُتَسَلْسِلةُ لايبنْنز } \\
& \text { Leibnitz test = اختِبارُ لايبنْنز }
\end{aligned}
$$

$$
\begin{aligned}
& \text { lemma = تَوْطِئة } \\
& \text { lemma of duBois-Reymond = تَوْطِئُ دوبوا-ريمونْد }
\end{aligned}
$$

$$
\begin{aligned}
& \text { lemniscate of Bernoulli }=\text { لِمْنِسْكات بِرْنولّي } \\
& \text { lemniscate of Gerono = لِمْنسْكات جيرونو } \\
& \text { length }=\text { طول } \\
& \text { length of an arc = طولُ قَوْس }
\end{aligned}
$$

$$
\begin{aligned}
& \text { letter-box principle = مَبْدَأُ صُنْدوق الرَّسائل } \\
& \text { مُنْحَني مُسْتْىَى (مُنْحَني سَوِّةَ) } \\
& \text { level set =مَجْموعةُ مُسْتْوَى (مَجْمْوعةُ سِوِيَّة) } \\
& \text { level surface = سَطْحُ مُسْتُوَى (سَطْحُ سَوَيَّة) } \\
& \text { رَمْزُ ليڤي- تشيڤيتا } \\
& \text { lexicographic order = تَرْتيبٌ مُعْجَمِيّ } \\
& \text { l'Hôpital's cubic = مُكَّبُ لوييتال } \\
& \text { l'Hôpital's rule = قاعِدةُ لوبيتال } \\
& \text { I'Huilier's equation = مُعادَلةُ لويلييه } \\
& \text { 'مُبْهَنَةُ لويلييه } \\
& \text { مُبرَهْنَةُ ليبونوف في التَّحَدُّب }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Liapunov function = دالَّهُ ليبونوف }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Lie algebra =جَبْرُ بِي } \\
& \text { Lie brackets = حاصرِّنا لِي } \\
& \text { Lie commutator =مُبَدِّلُ لِي لي } \\
& \text { Lie product =جُداءُ كِيُلِ } \\
& \text { lift }=\text { مُصعِّد } \\
& \text { lift problem = مَسْألةُ التَّصْعيد } \\
& \text { lifting = تَصْعيد } \\
& \text { like terms = حُدودٌ مُتْماثِلة } \\
& \text { likelihood = أرجَحِيَّة } \\
& \text { likelihood ratio = نسْبُة الأرْجَحَيَّة } \\
& \text { likelihood ratio test = اختِبارُ نِسْبِة الأرْمَحَحِيَّة } \\
& \text { limaçon }=\text { صَدَفَة } \\
& \text { limaçon of Pascal = صَدَفَةُ پֶاسْكال } \\
& \text { limit }=\text { نهاية } \\
& \text { limit comparison test = اختِبارُ مُقارَنةِ النّهاية } \\
& \text { limit inferior = النّهايةُ الدُّنُّيا } \\
& \text { limit of a filter = نهايُُ مُرَشُّحة } \\
& \text { limit of a net = نهايةُ شَبَكة } \\
& \text { limit of an indeterminate form }=\text { نهايةُ صيغةِ عَدَمِ تَعْينن } \\
& \text { limit on the left }=\text { نهايةٌ من الِيسار } \\
& \text { limit on the right = نهايةٌ من اليُمين } \\
& \text { limit ordinal = تَرْتيبةٌ حَدِّيّة } \\
& \text { limit point }=\text { تُقْطُةُ نِهاية (نُقْطٌةٌ حَدِيّةَة) } \\
& \text { limit superior = النّهايةُ العُلْيا } \\
& \text { limit test = اختِبارُ النّهاية } \\
& \text { limits of integration =حَدَّا المُكامَلة (حَدَّا النَّكامُل) } \\
& \text { Lindelöf space =فَضاءُ كيندلوف } \\
& \text { Lindelöf theorem = مُبرْهَنُةُ ليندْلوف }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مُبرَهَنْةُ لينْدمان } \\
& \text { line }=\text { خَطّ } \\
& \text { line at infinity = الُمْتُقتِمُ في اللانهِاية } \\
& \text { line graph = بَيانٌ بَخَطِّ مُنْكَسر } \\
& \text { line integral = تَكامُلْ على مُنْحَنِ } \\
& \text { line of curvature =خَطُّ التَقَوَسُسْ } \\
& \text { line segment = قِطْعٌةٌ مَسْتقيمة } \\
& \text { linear algebra = الجَبْرُ الحَطِّيّ } \\
& \text { linear algebraic equation = مُعادَلةٌ جَبْرَيَّةٌ خَطِّيّة، } \\
& \text { linear approximation }=\text { تَقْريبٌ خَطِّيّ } \\
& \text { linear combination = تَرْكيبٌ خَطِّيّي } \\
& \text { تَكُابُقٌ خَطِّيّ } \\
& \text { تَقْارُبٌ خَطِّيّ } \\
& \text { linear dependence = تَبَيِّةٌ خَطِّيّة (ارْتِباطٌ خَطِّي) } \\
& \text { مُمُعادَلٌْ تَفاضُلِيَّةٌ خَطِّيّة } \\
& \text { linear element = عُنْرُرٌ خَطِّيّ } \\
& \text { linear equation = مُعادَلةٌ خَطِّيّة } \\
& \text { linear estimate }=\text { تَقْديرٌ خَطِّيّ } \\
& \text { linear extension = تَمْديدُ خَطِّيّي } \\
& \text { linear form = صيغةٌ خَطِّيّة } \\
& \text { linear fractional transformations }=\text { تَحْويلاتُ كَسْرِيَةٌ خَطِّيّة } \\
& \text { linear function = دالَّةٌ خَطِّيّة } \\
& \text { linear functional }=\text { دالِّيٌّ خَطِّيّ } \\
& \text { linear hypothesis = فَرْيَّةٌ خَطِّيّة، } \\
& \text { linear independence = استِقْلالٌ خَطِّيّ } \\
& \text { مُتُباينةٌ خَطِّيّة } \\
& \text { مُعْادَلةٌ تَكامُلِيَّةٌ خَطِّيّة } \\
& \text { linear interpolation = استِكْمالٌ دانخلِيٌّ خَطِّيّ } \\
& \text { linear manifold = مُتَتِّعِّةٌ خَطِّيّة } \\
& \text { linear map = تَطْبيقٌ خَطِّيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { linear model }=\text { نَموذَجٌ خَطِّيّ } \\
& \text { linear operator }=\text { مُؤَتِّرٌ خَطِّي" خِّي } \\
& \text { linear order }=\text { تَرْتيبٌ خَطِّيّ } \\
& \text { linear programming =بَمْمَجةٌ خَطِّيّة } \\
& \text { linear regression }=\text { انْكِفاءٌ خَطِّيّ خِّ } \\
& \text { linear scale = تَدْريجٌ خَطِّيّ } \\
& \text { linear space }=\text { فَضاءٌ خَطِّيّ } \\
& \text { linear span = بَنْطةٌ خَطِّيّة } \\
& \text { linear subspace }=\text { فَضاءٌ جُزْئِيٌّ خَطِّيّ } \\
& \text { linear system = مَنظومةٌ خَطِّيّة } \\
& \text { linear topological space = فَضاءٌ طبولوجيٌّ خَطِّيّ } \\
& \text { linear transformation }=\text { تَحْويلِ خَطِّيّ خِّي } \\
& \text { مُنْحَنَيَاتٌ مُرْتَبطةٌ خَطِّيَّا } \\
& \text { linearly dependent functions = دَوالُّ مُرْتَبُطٌّ خَطِّيّا } \\
& \text { كَمَيِّاتُ مُرْتَبطةٌ خَطِّيَّا } \\
& \text { linearly dependent vectors = مُتَّجهاتٌ مُرْتَبطةٌ خَطِّيَّا } \\
& \text { linearly disjoint extensions = تَمْديدانِ مُنْفَصِلانِ خَطِّيَّا } \\
& \text { مُعادَلاتٌ مُسْتَقِلَّةٌ خَطِّيّا } \\
& \text { linearly independent functions = دَوالُّ مُسْتَقِلَّةٌ خَطِّيّا } \\
& \text { كَكِّيَّاتٌ مُسْتَقِلَّةٌ خَطِّيَّا } \\
& \text { linearly independent vectors = مُتَّجهاتٌ مُسْتَقِلَّةٌ خَطِّيَّا } \\
& \text { linearly ordered set = مَجْموعةٌ مُرَّبَّةٌ خَطِّيًّا } \\
& \text { links curve = مُنْحَني الحَلَقات مرنَات } \\
& \text { Liouville function = دالَّةُ لِيوڤيل } \\
& \text { Liouville number =عَدَدُ لِيو ڤيل } \\
& \text { Liouville-Neumann series =مُتَسَلْسِلةُ لِيو ڤِيل-نويْمان ئِيْ } \\
& \text { Liouville's equation =مُعادَلةُ كِيو ڤيل } \\
& \text { Liouville's theorem }=\text { مُبرهَهَنةُ لِيو ڤيل } \\
& \text { Lipschitz condition }=\text { شَرْطُ ليبْشتز } \\
& \text { Lipschitz function = دالَّةُ ليبْثنز }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Lipschitz integral = تَكامُلُ يِبْثِتْز } \\
& \text { Lipschitz mapping = تَطْبيقُ ليبْشُنْزِ } \\
& \text { Lissajous curves = مُنحَنياتُ ليساجو } \\
& \text { Lissajous figures = أشكالُ ليساجو } \\
& \text { literal constant }=\text { ثابتةٌ حَرْفِيَّة } \\
& \text { literal expression =تَعْيرٌ حَرْفِي" } \\
& \text { literal notation = تَدْو يزٌ حَرْفِيّ حِيّ } \\
& \text { Littlewood conjecture = مُخَمَّنُةُ لِتِلْورد } \\
& \text { مُنْحَنٍ بوقِيّ } \\
& \text { Lobachevskian geometry = هَنْدَسُّ لوباتْشيفْسْكي }
\end{aligned}
$$

$$
\begin{aligned}
& \text { local algebra }=\text { جَبْرٌ مَحَلِّليّيْ } \\
& \text { local base = أساسٌ مَحَلِّيَّ (قاعِدةٌ مَحَلِّيّة) } \\
& \text { local coordinate system = مَنْظومةُ إحْدَاتِيَّاتِ مَحَحِّيّة } \\
& \text { local coordinates = إحداثِيَّاتٌ مَحَلِّيّة } \\
& \text { local distortion = تَشْوْ يهٌ مَحَلِّلِّ } \\
& \text { local maximum =قيمةٌ عُظْمْى مَحِلِّيّة } \\
& \text { local minimum = قيمةٌ صُغْرَى مَحَلِّيّة } \\
& \text { local property = خاصِيَّةٌ مَحَلِّيّة } \\
& \text { local ring = حَلَقٌةٍ مَحَلِّيّة، } \\
& \text { local solution =حَلِّ مَحِلِّيّ } \\
& \text { local transformation =تَحْ يلِ مَحَلِّيّيِّ } \\
& \text { locally convex space = فَضاءٌ مُحَحَّبَّ مَحَلِّيَّا } \\
& \text { locally convex topology = طبولو جيا مُحَحَّبَةٌ مَحَلِّيَّا } \\
& \text { locally finite family of sets = جَماعةُ مَجْموعَاتٍ مُنْتَهيةٍ مَحَحِّيًّا } \\
& \text { locally integrable function = دالَّةٌ كَمُولةٌ مَحَلِّيًّا } \\
& \text { locally one to one function = دالَّةٌ مُتْباينةٌ مَحَلِّيَّا } \\
& \text { locally symmetric space = فَضاء تُناظُريٌّ مَحَلِّيًّا } \\
& \text { locally trivial bundle = حُزْمُة أْلْيافٍ تافِهِّةٌ مَحَلِّيًّا } \\
& \text { location principle = مَبْدَأُ تَحْديدِ الَوْقِقع }
\end{aligned}
$$

$$
\begin{aligned}
& \text { location problems = مَسائِلُ تَحْديدِ المَوْقِع }
\end{aligned}
$$

$$
\begin{aligned}
& \text { locus = مَحَلْ هَنْدَسِيّ } \\
& \text { log paper = وَرَقُةُ رَسْمْ لُغارِتمِيَّة } \\
& \text { log tables = جَداولُ لُغارتْمِيَّة } \\
& \text { logarithm = لُغارتْم } \\
& \text { logarithmic (adj) = لُغارِتْمِيّ } \\
& \text { logarithmic coordinates = إحداتِيَّاتٌ لُغارتْمِيَّة } \\
& \text { إمُنْحَن لُغارِتْمِيّ } \\
& \text { مُمُشْتُقٌ ُلغارِتْمِيّ } \\
& \text { مُفُفاضَلةُ لُغارِنْمِيَّة } \\
& \text { logarithmic distribution =تَزْيعٌ لُغارِتْمِيّ } \\
& \text { مُعُعادَلةٌ لُغارتْمِيَّة } \\
& \text { دالَّلٌّ لُغارِتْمِيَّة } \\
& \text { logarithmic integral = تَكامُلْ لُغارِتْمِيّ } \\
& \text { logarithmic scale = تَدْريجٌ لُغارِتمبيّ } \\
& \text { logarithmic series = مُتَسَلْسلةُ لُغْارتْمِيَّة } \\
& \text { logarithmic spiral }=\text { حَلَزونٌ لُغارِتْمِيّ } \\
& \text { logarithmic transformation = تَحْوِلٌ لُغارِتْمِيّ } \\
& \text { logarithmically convex function = دالَّةٌ مُحَدَّبَّ لُغارْتْمِيَّا } \\
& \text { logic }=\text { مَنْطِق } \\
& \text { logical addition }=\text { جَمْعٌ مَنْقِقيّ } \\
& \text { logical connectives =رَوابطُ مَنْطِقِيَّة } \\
& \text { logical consequence = نَيجةٌ مَنْطِقِيَّة } \\
& \text { logical function = دالَّةٌ مْنططِقِّةِ } \\
& \text { logical multiplication }=\text { ضَرْبٌ مَنْقِقِي" } \\
& \text { Iogically equivalent statements = تَقْريرَانِ مُتَكَافِيَانِ مَنْطِقِيَّا } \\
& \text { مُمْنحَنٍ مَنْطِقِيٌّ رَمْزِيّ (مُنْحَنٍ لوجستيّ) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { logistic function = دالَّةٌ مَنْطِقِّةٌ رَمْزِيَّة (دالَّةٌ لوجسْنِّيَّة) } \\
& \text { logistic spiral }=\text { حَلَزونٌ مَنْطِقِيٌّ رَمْزِيّ } \\
& \text { lognormal distribution }=\text { تَوْزيعٌ نظامِيُّ لُفارِتْمِيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { قِسْمةٌ طَوَيلة } \\
& \text { long radius }=\text { نصْفُ قُطْرٍ طَويل } \\
& \text { تَكْرارُ المَدَى البَعيد } \\
& \text { loop = حَلَقة، عُرْوة } \\
& \text { lower bound =حَدٌّ أدنْى (عُنصُرٌ قاصِر) عرْ } \\
& \text { lower Darboux integral = تَكامُلُ دارْبو الأْنْىَ } \\
& \text { lower Darboux sum =مَجْمو عُ داربو الأدنَى } \\
& \text { lower Hessenberg matrix }=\text { مَصْفوفةُ هِسنْبْرْغ الدُّنْيا } \\
& \text { lower integral }=\text { النَّكامُلُ الأدْنَى } \\
& \text { lower limit = النّهايةُ الدُّنْيا } \\
& \text { lower limit function = دالَّةُ النّهايةِ الدُّنّْا }
\end{aligned}
$$

$$
\begin{aligned}
& \text { lower Riemann integral = تَكامُلُ ريمان الأدْنَى } \\
& \text { lower Riemann sum = مَجْمو عُ ريمان الأذنْى } \\
& \text { lower sum = مَجْمو عٌ أدنْىَ } \\
& \text { مُصْفوفةٌ مُثَلّْثِيَّةٌ سُفْلْيَّة } \\
& \text { lowest common denominator = المقام المُشْتْرَكُ الأصْنَر } \\
& \text { lowest common multiple }=\text { الُُضاعَفُ المُشْترَكُ الأضْغَرُ } \\
& \text { loxodromic spiral }=\text { حَلَزونٌ ثابتثُ المَيْل } \\
& \text { مُعْيِّن } \\
& \text { Lucas numbers = أعدادُ لو كاس } \\
& \text { lune }=\text { هِلال } \\
& \text { lune of Hippocrates }=\text { هِلالُ هيبو قْراط } \\
& \text { Luzin space }=\text { فَضاءُ لوزين } \\
& \text { مُبرْهَنةُ لوزين } \\
& \text { Lyapunov function = دالَّةُ ليبونوف }
\end{aligned}
$$

```
M
Machin's formula = صيغةُ
    Maclaurin expansion = نَشْرُ
Maclaurin integral test = اختِبارُ
    Maclaurin series = مُتس⿱㇒⿻⺕亅丷=سلةُ
```



```
Maclaurin-Cauchy test = اختِبارُ ماكْلوران-كوشي
    Maclaurin's formula = صيغةٌ ماكْلوران
```



```
            macron = خَطٌ فَوْقِيّ 
        magic square = مُربَعٌ سِحْرِيّ*
    magnitude = قيمةٌ مُطْلْقة"
    Magog triangle = مُش⿻⿱一⿱日一丨凵⿻丷夫
    main diagonal = قُطْرٌ رَئسِيّ،
    major arc = القَوْسُ الكبير
    major axis = المحْوْرُ الكبير
    Oمُنحْني صَليب)
```



```
    Mann-Whitney test = اختِبارُ مان- وتنّ)
        الجُزءءُ
        many-one (adj) = مُتعدَدٌّدٌ
    many-one function = دالْهُ مُتعَدِّدٍ
    many-to-one (adj) = 'متعَدِّدٌ
many-to-one function = دالُّة⿱一⿻口⿰丨丨⿱一𫝀口
    map (mapping) = تُطبيق
    mapping space = فَضاءُ التُّبْبیقات
marginal distribution = تُوْيعٌ هامِشبيّ
marginal expectation = =توُقُعٌ*)
marginal probability = احتِمال" هامِشبيّN
    mark = عُلامة)
```

$$
\begin{aligned}
& \text { Markov chain = سِلْسلةُ مارْكوف } \\
& \text { مُتُبَاينةُ مار كوف }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Markov sequence = مُتَالِيةُ مارْكوف } \\
& \text { marriage theorem }=\text { مُبَرْهَنُة الزَّوَاج } \\
& \text { مَسْألهُ أزوْاج المُتزَوِّجين } \\
& \text { martingale }=\text { حَكَمة } \\
& \text { Mascheroni's constant = ثابِتُُ ماسْكروني } \\
& \text { match = عَمَلِّيَّةُ مُواءَمة } \\
& \text { material implication }=\text { اقْتِضاءٌ مادِّي" } \\
& \text { math (maths) = الرِّياضِيَّات الِّانيُ } \\
& \text { mathematical analysis = النَّحْليلُ الرِيّاضيّيّ } \\
& \text { mathematical expectation }=\text { تَوَقُّعٌ رِياضيّ لرِيّي" } \\
& \text { mathematical induction }=\text { استِقْراءٌ رِياضيّيّ } \\
& \text { mathematical logic }=\text { مَنطقِقٌ رِياضيّيّ رِياضي } \\
& \text { mathematical model }=\text { نَموذَجْ رِياضِيّ } \\
& \text { mathematical probability }=\text { احتِمالٌ رِياضِيّ رِياضيّ } \\
& \text { mathematical programming =بَرْمَجْةٍ رِياضِيَّة رِيّة } \\
& \text { mathematical system = مَنْوَمُّ رِياضِيَّة رِيَّة } \\
& \text { mathematical tables }=\text { جَداوَلُ رِياضِيَّة } \\
& \text { mathematics = الريِّاضِيَّات } \\
& \text { Mathieu functions = دوالُّ ماتيو } \\
& \text { matrix = مَصْفوفة } \\
& \text { matrix algebra }=\text { جَبْرُ المَصْفوفات } \\
& \text { matrix calculus =حُسْبانُ المَصْفوفات } \\
& \text { matrix element }=\text { عُنصرُرُ مَصْفوفة } \\
& \text { matrix of a linear transformation =مَصْفوفةُ تَحْوِيلٍ خَطِّيّ } \\
& \text { matrix of coefficients = مَصْفوفةُ المُعامِلات } \\
& \text { matrix theory }=\text { نظَرِيَّة المَصْفوفات } \\
& \text { matroid }=\text { ماتْروئيد }
\end{aligned}
$$

$$
\begin{aligned}
& \text { max = أعظَمِيّ (عُظْمَى) } \\
& \text { maximal chain = سِلْسِّةٌ أَعْظَمِيَّةِ } \\
& \text { maximal element = عُنصرُ أَعْظَمِي" } \\
& \text { maximal ideal = مِثالِيٌّ أعْظَمِيّ } \\
& \text { maximal independent set = مَجْموعةٌ مُسْتَقِلُّةُ أَعْظَمِيَّة } \\
& \text { maximal member =عُنصرٌ أعْظَمِيّ } \\
& \text { maximal planar graph }=\text { بَيانٌ مُسْنَوٍ أَعْظَمِيّ } \\
& \text { maximin }={ }^{\text {أعظَمِيُ الأصْغَرِيّ }} \\
& \text { maximum = قيمةٌ عُظْمَى } \\
& \text { maximum condition =شَرْطُ العُنْصُرِ الأُعْظَمِيّى } \\
& \text { maximum flow problem = مَسْألةُ الجَرَيانِ الأعْظَم } \\
& \text { maximum matching }=\text { مُواءَمْةٌ عُظْمَى الْعُمَ } \\
& \text { maximum-modulus principle = مَبْدًُاُ القيمةِ المُطْلَقِةِ العُظْمَى } \\
& \text { maximum-value theorem =مُبَهْنَةُ القيمةِ العُظْمُى المُىَى } \\
& \text { meager set = مَجْمْوعةٌ هَزيلة } \\
& \text { mean = مُتَوَسِّط، وَسَطِ } \\
& \text { mean curvature = تَقُوسٌ وَسَطِيّ } \\
& \text { mean deviation =ُتُوَسِّطُ الانْحِر افات } \\
& \text { mean deviation = انْحِرِ فُ مُتْوَسِّط } \\
& \text { mean difference = مُتوَسِّطُ الفُروق } \\
& \text { mean evolute = مْنُشورٌ وَسَطِيّي" } \\
& \text { mean normal curvature }=\text { تَقُوُّ ناظِمِيٌّ وَسَطِيّيّ } \\
& \text { mean proportional }=\text { تَناسُبٌ وَسَطِيّي" } \\
& \text { mean square =مُتوَسِّطُ المُربَعَات } \\
& \text { mean terms =حَدَّا الوَسَطط } \\
& \text { mean value = قيمةٌ وُسْطَى الوسُى } \\
& \text { mean value theorem =مُبْهَنَةُ القيمةِ الوُسْطَى }
\end{aligned}
$$

$$
\begin{aligned}
& \text { measurable (adj) = قَيوس (قابِلُّ للقِيِس) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { measurable cover = تَعْطِيٌة قَيوسة (تَزْطِيٌة قابلةٌ للقِياس) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { measurable space = فَضْاء }{ }^{\circ} \\
& \text { measure }=\text { قِياس } \\
& \text { measure space }=\text { فَضاءُ ُقيِّ } \\
& \text { measure theory = نَظَريَّةُ القِياس } \\
& \text { measure zero = قِياس" صِفْريّ } \\
& \text { mechanics = الميكانيك } \\
& \text { medial triangle = مُتَلُّثْ مُتَوَسِّط }
\end{aligned}
$$

$$
\begin{aligned}
& \text { median point = نُقْطٌة مُتَوَسِّطة } \\
& \text { median triangle }=\text { مُثلَّثْ مُتْوَسِّط } \\
& \text { meet = مُلْتُقىى } \\
& \text { Meijer transform = مُحَوِّلُ ميَرِ } \\
& \text { Mellin inversion formulas = صيغَتا مِلين التُّعَاكُسِّتّان } \\
& \text { Mellin transform =مُحوِّلُ مِلين } \\
& \text { member of a set =عْنصرُ مَجْموعة } \\
& \text { member of an equality = طَرَفُ مُساواة } \\
& \text { membership function = دالَّةُ الحُضْوَّيَّة } \\
& \text { ménage problem =مَسْألةُ الأزْواج } \\
& \text { Menelaus' theorem = مُبْرَنَنُة مينيلاوس } \\
& \text { مُبرْهَنُةُ مينْجَرَ } \\
& \text { mensuration }=\text { قِياس } \\
& \text { Mercator's series = مُتَسَلْسِلةُ ميرْ كاتور } \\
& \text { meridian section }=\text { مَقْطَعٌ زَوالِيّ } \\
& \text { meromorphic function = دالّْةٌ ميرومورْفِّيَّة } \\
& \text { Mersenne number = عَدَدُ مِرسين } \\
& \text { Mersenne prime =عَدُدُ مِرسين الأوَّبِّيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Merten's theorem = مبَرْهَنُةُ مِرْتين } \\
& \text { mesh = دِقَّةُ تَجْزئة } \\
& \text { mesokurtic distribution = تَوْيعٌ وَسَطِيُّ التَفَفَطْحُحْ } \\
& \text { metacompact space = فَضاءٌ فَوْقَ مُتراصّ مَ } \\
& \text { method of exclusions = طَريقةُ الإِقصاءات } \\
& \text { method of exhaustion =طَريقةُ الاسْنِّفاد }
\end{aligned}
$$

$$
\begin{aligned}
& \text { method of moments = طَيقةُ العُزوم } \\
& \text { method of semiaverages = طَريقُُ أنْصافِ المُتُوَسِّطات } \\
& \text { metric = دالَّةُ مَسافة } \\
& \text { metric (adj) = مِنرِيّ } \\
& \text { metric space }=\text { فَضاءٌ مِنْريّ } \\
& \text { metric tensor = مُوتِّرٌ مِتْرِيّ } \\
& \text { metrizable (adj) = مَتور (قابِل لِلِتَّمْتير) } \\
& \text { metrizable space = فَضاءٌ مَتور (فَضاءٌ قابِلْ لِلَّمَّنْير) } \\
& \text { Meusnier's theorem =مُبْهَنَنُ مونييه }
\end{aligned}
$$

$$
\begin{aligned}
& \text { midpoint theorem }=\text { مُبَرْنَةُ نُقْطِةٍ الُمْنُصَفَ } \\
& \text { mile }=\text { مِيل } \\
& \text { Milne method = طَيقةٌ مِلْن } \\
& \text { min }=\text { أصغَرِيّ (صُغْرَى) } \\
& \text { minimal cover = تَغْيِّةٌ صُغْرَى } \\
& \text { minimal element =عُْصُرٌ أصْغرَيّ } \\
& \text { minimal equation = مُعادَلْةٌ صُغْرَى } \\
& \text { minimal ideal }=\text { مثِالِيٌّ أصْغَرِيّ صغيّ } \\
& \text { minimal matrix }=\text { مَصْفوفةٌ صُغْرَى } \\
& \text { minimal member = عُنصرٌ أصْغرِيّ } \\
& \text { minimal polynomial }=\text { حُدو دِيَّةٌ صُغْرَى } \\
& \text { minimal residue }=\text { الباقي الأصْغَر (أصْغَرُ باقٍ) } \\
& \text { minimal surface =سَطْحٌ أصْفُرِيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { minimax }=\text { أصغَرِيُّ الأعْظَمِيّ } \\
& \text { minimax technique = أُسلوبُ تَصْغِير الأعْظَم } \\
& \text { minimization }=\text { تَصْغير } \\
& \text { minimum = قيمةٌ صُغْرَى } \\
& \text { minimum condition =شَرْطُ المُنُصُر الأصْغَريّ } \\
& \text { minimum cut }=\text { قَطْعٌ أصْغَرِيّ اصِيّ } \\
& \text { minimum edge cover = تَطْيِّةٌ صُغْرَى بالوُصْالات } \\
& \text { minimum polynomial =حُدوِيَّةٌ صُغْرَى } \\
& \text { minimum vertex cover = تَطْيةٌ صُغْرَى بالرُّؤوس صُرى } \\
& \text { minimum-value theorem =مُبَرْنَةُ القيمةِ الصُّغْرُى } \\
& \text { مُقَدِّرٌ ذو تَبَايُنٍ أصْغَرِيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { min-max technique }=\text { أُسلوبُ تَصْغيرِ الأُغْظم }
\end{aligned}
$$

$$
\begin{aligned}
& \text { minor arc = القَوْسُ الصَّغير }
\end{aligned}
$$

$$
\begin{aligned}
& \text { minuend }=\text { الَمْرْ } \\
& \text { minus }=\text { ناقِص } \\
& \text { minus sign }=\text { إشارةُ النَّاقِص } \\
& \text { minute }=\text { دَقيقة } \\
& \text { mirror plane of symmetry = مُسنتوي تَناظرُ مِرْآوِيٌّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { mixed decimal =عَدَدْ عَشْرِيٌّ مُخْنَلَط } \\
& \text { mixed expression = عِبارةٌ مُخْتَلَطة } \\
& \text { mixed graph = بَيانٌ مُخْتْنَط مُنِّ } \\
& \text { mixed number = عَدَدٌ مُخْتَلَط }
\end{aligned}
$$

$$
\begin{aligned}
& \text { mixed radix (adj) = مُخْتَطُطُ الأساس } \\
& \text { mixed sampling = اعتِيانٌ مُخْتَلَط } \\
& \text { mixed surd = عَدَدٌ أصَمُمُ مُخْتَلَط }
\end{aligned}
$$

$$
\begin{aligned}
& \text { mixed tensor = مُوتِّرٌ مُخْتَلَط }
\end{aligned}
$$

$$
\begin{aligned}
& \text { mixed-base notation = تَدْوينٌ مُخْتَلَطُ الأساس } \\
& \text { mixed-base number = عَدَدٌ مُخْتَلَطُ الأساس الاسْ } \\
& \text { mixed-radix number =عَدَدٌ مُخْتَلَطُُ الأساس } \\
& \text { Möbius band =شرَيطُ موبيوس } \\
& \text { Möbius function = دالَّةُ موبيوس } \\
& \text { Möbius inversion formula = صيغةٌ موبيوس التَّعاكُسِيَّة } \\
& \text { Möbius strip }=\text { شَريطُ موبيوس } \\
& \text { Möbius transformations =تَحْو يلاتُ موْبيوس } \\
& \text { modal class }=\text { صَفٌّ مِنْوالِيّ } \\
& \text { mode }=\text { مِنوال } \\
& \text { model theory = نَظَرِيَّةُ النَّماذِ ج } \\
& \text { modern algebra }=\text { الجَبْرُ الحَديثهُ المُرئ } \\
& \text { modified Bessel equation =مُعادَلُّة بِسل المُعَدَّلة } \\
& \text { modified Bessel functions = دَوالُّ بِسِل الُمَعَّلَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { modified Hankel functions = دَوالُّ هانْكل المُعَدَّلة الْمُدلَ } \\
& \text { modified mean }=\text { وَسَطٌ مُعَدَّل } \\
& \text { modular group = زُمْرةٌ مَقاسِيَّة } \\
& \text { modular lattice }=\text { شَبَكةٌ مَقاسِيَّة مُقِة } \\
& \text { module = مودول } \\
& \text { مِقِياسُ (القيمةُ الُمُلْقُةُ لــ) عَدَدٍ عُقَدِيّ } \\
& \text { modulus of a logarithm =مِيْاسُ التَّحْويلِ في اللُّفارِتْم } \\
& \text { modulus of congruence = مِقْياسُ النَّطابُق } \\
& \text { modulus of continuity = مِقْياسُ الاسْتْمْرُ رِيَّة } \\
& \text { molding surface }=\text { سَطْحُ قَوْبَبة } \\
& \text { moment }=\text { عَزْم } \\
& \text { الدَّالَّةُ المُوَلِّلُةُ لْلُزْورم } \\
& \text { moment problem =مَنْألةُ العُزوم }
\end{aligned}
$$

$$
\begin{aligned}
& \text { moment sequence = مُتَالِليةُ عُزوم } \\
& \text { صيغةٌ مونْج } \\
& \text { Monge's circle theorem }=\text { مُبرَهْنةُ دَوائِرُ مونْج } \\
& \text { طُرَائقُ مونج } \\
& \text { مَسْألةُ مونْج } \\
& \text { monic equation }=\text { مُعادَلٌّةٌ واحِدِيَّة } \\
& \text { monic polynomial }=\text { حُدو دِيَّةٌ واحِدِيَّة } \\
& \text { monkey saddle = سَرْجُ السَّعْدان }
\end{aligned}
$$

$$
\begin{aligned}
& \text { عامِلْ أُحادِيُّ الحَدّ } \\
& \text { monomial polynomial =حُدوِيَّةٌ أُحادِيَّةُ الحَدَّ } \\
& \text { monomorphism = تَشاكُلٌ مُتْبَاين } \\
& \text { مُمبرْهَنةُ النَّقَارُب الرُّتيب }
\end{aligned}
$$

$$
\begin{aligned}
& \text { monotone decreasing sequence = مُتَالِيةٌ رَتيبةٌ تَناقُصِيَّة } \\
& \text { monotone function }=\text { دالَّةٌ رَتيبة } \\
& \text { monotone increasing function = دالَّةٌ رَتيبة تَز ايُدِيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { monotone sequence = مُتنتالِيٌّةٌ رَتيبة } \\
& \text { monotonic (adj) }=\text { رَتيب } \\
& \text { monotonic function = دالَّةٌ رَتيبة } \\
& \text { monotonic system of sets = مَنْظومةٌ مَجْمو عاتٍ رَتيبة } \\
& \text { أسلوبُ مونْتي كارْلو } \\
& \text { Moore space }=\text { فَضاءُ مور } \\
& \text { Moore-Osgood theorem = مُبْهَنةُ مور-أُو سْغود } \\
& \text { Moore-Penrose inverse }=\text { مَعْكوس مور- يْروز } \\
& \text { Moore-Smith convergence }=\text { تَقارُبُ مور- سْميث } \\
& \text { Moore-Smith sequence }=\text { مُتنتالِيةُ مور- سْميث موريث }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Moore-Smith set }=\text { مَجْموعةٌ مور- سْميث } \\
& \text { مُبرْهَنةُ موريرا } \\
& \text { Morley's theorem }=\text { مُبرْهَنُةُ مورْنِّ } \\
& \text { Morley's triangle }=\text { مُثَّلَّثُ مورْلِّلي } \\
& \text { Morrie's law }=\text { قانونُ موري } \\
& \text { نَظَرِيَّةُ مورْس } \\
& \text { Morse-Thue sequence =مُتنالِليةُ مورس- ثو } \\
& \text { Moss's egg = بَيْضةُ موسْ } \\
& \text { مُبَهْنَةُ موتْزْكين }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Muller method = طَيقةُ ميولرَ } \\
& \text { مُشْتْقَقٌ مُتَحِدِّدُ الأبْعَاد } \\
& \text { multifactorial = مُتَعَدِّدُ الْعَامِلِّيَات } \\
& \text { multifoil = مُتَعَدِّدُ وُرَيْقات } \\
& \text { multifunction = دالَّةٌ مُتْعَدِّدةُ القِيَمَ } \\
& \text { multigraph = بَيانٌ مُتْعَدِّد } \\
& \text { multilinear algebra = جَبْرٌ مُتَعَدِّدُ الخَطِيّّةُ } \\
& \text { صultilinear form = صيغةٌ مُتَحَدِّدةُ الحَطِيّّة } \\
& \text { دالَّةٌ مُتْعَدِّدةُ الخَطِيّةّة } \\
& \text { multimodal distribution =تَوْيعٌ مُتَحِدِّدُ المِنْو الات } \\
& \text { multinomial =مُتَعِّدُ الحُدود الُوْ } \\
& \text { multinomial coefficient =مُعامِل مُتَحَدِّدُ الحُدود } \\
& \text { multinomial distribution =تَزْيٌُ مُتْعَدِّدُ الحُدود } \\
& \text { مُبرْهنَةُ مُتَعَدِّدِ الحُدود } \\
& \text { مُحاولاتٌ مُتَعَدِّدةُ الحُدود } \\
& \text { multiple }=\text { مُضاعَف } \\
& \text { multiple edges = وُصْلاتٌُ مُضاعَفة } \\
& \text { multiple integral = تَكامُلِ مُصاعَف }
\end{aligned}
$$

$$
\begin{aligned}
& \text { انْكِفاءٌ خَطِّيٌّ مُضاعَف مضِ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { multiple point = نُقْةٌ مُضاعَفُة } \\
& \text { multiple root = جَذْرٌ مُضاعَف مُمْ } \\
& \text { multiple sequence = مُتتالِيةٌ مُضاعَفة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { multiple-valued (adj) = مُضاعَفُ القيمة } \\
& \text { multiple-valued logic = مَنْطِقٌ مُضاعَفُ القيمة مُحْ } \\
& \text { multiplicand =مَضْروبٌ فيه } \\
& \text { multiplication = عَمَلِيَّةُ الضَّرْبْ } \\
& \text { multiplication formula }=\text { صيغةُ جُداء } \\
& \text { multiplication magic square }=\text { مُربَّعٌ سِحْرِيٌّ ضَرْبِيّ } \\
& \text { multiplication on the left = جُداءٌ من اليَسار } \\
& \text { multiplication on the right }=\text { جُداءٌ من اليَمين } \\
& \text { multiplication sign }=\text { إشارةُ الضَّرْب } \\
& \text { multiplication table }=\text { جَدْوْلُ الضَّرْبُ } \\
& \text { multiplicative function = دالَّةٌ ضِرْيَّةِّة } \\
& \text { multiplicative group = زُمْةٌ ضرَرْيَّة } \\
& \text { multiplicative identity = عُنْصُرٌ مُحايٌِ ضَرْبِيّ } \\
& \text { مُمْكوس" ضَرْبِيّ } \\
& \text { multiplicative perfect number =عَدَدٌ تامٌّ ضَرْبِّيّ } \\
& \text { multiplicative subset = مَجْموعةٌ جُزْيَئَّةٌ ضرْبَّةَّة } \\
& \text { multiplicity = رُتبُةُ التَّضاعُفِ } \\
& \text { multiplier = مَضْروب } \\
& \text { مَنْطِقٌةٌ مُضاعَفُةُ التَّرَبُط } \\
& \text { عَدَدٌٌ تامٌّ ضَرْبِيّ } \\
& \text { multistage sampling = اعتِيانٌ مُتَعَلِّدُ المَراحِلِ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { multivariate analysis = النَّحْليلُ المُتَعَدِّدُ المُتْفِّرِّ ات ات }
\end{aligned}
$$

$$
\begin{aligned}
& \text { mutually exclusive events =حَوادِثُ مُتَنافِيةٌ مَتْنُى }
\end{aligned}
$$

$$
\begin{aligned}
& \text { N } \\
& \text { nabla }=\text { نابْل } \\
& \text { nabla squared = مُرَّعُعُ نابْلا } \\
& \text { naive set theory = النَظَرِيَّةُ الحَدْسِيَّةُ للمَجْموعاتُ } \\
& \text { Nakayama's lemma = تَوْطِئُة ناكاياما } \\
& \text { Naperian (Napierian) logarithm =لُغارْتْمٌ نيبريّ نيّ } \\
& \text { Napier's analogies =مُشابهاتُ نيبرَ } \\
& \text { Napier's bones = قُضْبانُ نييَر } \\
& \text { Napier's constant }=\text { ثابِتُةُ نِيَر } \\
& \text { Napier's inequality =مُتراجِحةُ نيِيرَ } \\
& \text { nappes =فَرْعا مَخْروط } \\
& \text { n-ary composition = تَركيبٌ نونيّيّ } \\
& \text { شَشُرَةٌ نونَّةُ } \\
& \text { natural boundary =حُدودٌ طَبيعِيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { natural function = دأَلٌّة طَيِيعِّةٍ } \\
& \text { natural logarithm = كُغارِتْمٌ طَبيعيّ" } \\
& \text { natural number = عَدَدٌ طَبيعيّيّ طِّ } \\
& \text { navel point = ُُقْطٌٌ سُريِّة (نُقْطةٌ وُسْطَى) } \\
& \text { n-cell = خَلِيَّةٌ نونيَّةِّ } \\
& \text { n-colorable graph = بَيانٌ نونيُّ التَّلْوين نينِ } \\
& \text { n-connected graph = بَيانٌ نونِيُّ التُّر ابُط } \\
& \text { n-dimensional space = فَضاءٌ نونِيُّ الأبُعاد } \\
& \text { near ring = شِبْهُ حَلَقة } \\
& \text { nearly isometric spaces =فَضاءانِ مُتقايسانِ تَقْرِيبًا حِّا } \\
& \text { necessary condition =شَرْطٌ لازمِ } \\
& \text { needle problem = مَنْألةُ الإبرْةِ لِمْ } \\
& \text { negation }=\text { نَفْي } \\
& \text { negative angle }=\text { زاوريةٌ سالِبة } \\
& \text { negative binomial distribution =تَزْيعٌ حَدَّانيُّ سالِب }
\end{aligned}
$$

$$
\begin{aligned}
& \text { negative correlation = ارِباطٌ سالِب } \\
& \text { negative definite matrix = مَصْفوفةٌ مُعَرَّةٌ سالِبة } \\
& \text { negative direction = اتّجاهٌ سالِب } \\
& \text { negative integer = عَدَدٌ صَحيحّ سالِب } \\
& \text { negative number = عَدَدٌ سالِب } \\
& \text { negative part = الجُزْءُ السَّالِبُبِّبُ } \\
& \text { negative pedal curve = مُنْحَنٍ قَدَمِيٌّ سالِبِ } \\
& \text { negative semidefinite matrix = مُصْفوفةٌ نصْفُ مُعَرَّةٍ سالِبة } \\
& \text { negative series = مُتَسَلْسلةٌ سالِبة } \\
& \text { negative set =مَجْموعةٌ سالِبة } \\
& \text { negative sign }=\text { إشارةُ السَّالِب (إشارةُ النَّاقِص) } \\
& \text { negative similarity point = نُقطُةُ التَّشابُهُ السَّأِبِ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { neighborhood of a point }=\text { جِوارُ نُقْطة } \\
& \text { neighborhood system = مَنظومةُ جِوارات } \\
& \text { Neil's parabola = قَطْعُ نيل المُكافِئُ } \\
& \text { nephroid = نيفْروئيد } \\
& \text { nephroid evolute = مَنْشورُ نيفْروئيد } \\
& \text { nephroid involute = ناشِرُ نيفْروئيد } \\
& \text { nested intervals = مَجالاتٌ مُتُدانِلة } \\
& \text { nested multiplication = ضَرْبٌ مُتَداخِل } \\
& \text { nested sets = مَجْموعاتٌ مُتَدانِلة مِحِّة } \\
& \text { nested-interval theorem =مبرَهْنَةُ المَجالاتِ المُمُدانِِلة } \\
& \text { net }=\text { شَبَكة } \\
& \text { net convergence = تَقارُبُ شَبَكة } \\
& \text { net flow }=\text { جَرَيانُ شَبَكة } \\
& \text { network }=\text { شَبَكة } \\
& \text { Neumann boundary condition =شَرْطُ نويْمان الحُدودِيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Neumann function = دالَّةُ نُوْيمان }
\end{aligned}
$$

> Neumann line =مُسْتَقيمُ نُويْمان
> مَسْألةُ نُويْمان
> Neumann series = مُتَسَلْسِلةُ نُويْمان
> neutral element = عُنصُرٌ مُحايد
> Newton-Cotes formulas = دَساتيرُ نيوتن-كوتس
> Newton-Raphson formula =
> دَساتير نيوتن
> مُتُطابقةُ نيوتن
> Newton's inequality = مُتر اجحةةُ نيوتن نيوتن
> Neyman-Person theory =نَرِيَّةُ نيمان-يِيرْسون نِئن
> مُربَهْنةُ نيكو ماخوس
> Nielsen's spiral =حَلَزونُ نيلْسن
> nilalgebra $=$ جَبْر مَعْدومُ القُوى
> nilpotent (adj) = مَعْدومُ القُوى
> nilpotent algebra $=$ جَبرٌ مَعْدومُ القُوى
> nilpotent element = عُنصُرٌ مَعْدومُ القُوَى
> nilpotent matrix $=$ مَصْفو فٌّ مَعْدومةُ القُوى
> nilradical ideal = مِثَالِيٌّ مَعْدومُ القُوْى
> nine complement $=$ مُتمِمَّمُ التِّسْعات
> nine-point circle = دائرةُ النِّقاطِ التّسِنع الِّع
> n-net = شَبَكةٌ نونيَّة
> Nobbs points $=$ نقاطُ نوبْس
> node $=$ عُقْدة
> Noetherian module $=$ مودولٌ نوثريّ
> Noetherian ring $=$ حَلَقةٌ نوثريَّة
> nomogram $=$ مُخَطَّطُ مُحاذاةُ
> nomograph = بَيانُ (مُخَطَّطُ) مُحاذاة مُ
> nonagon = تُساعِيُّ الأضْلا ع
> nonagonal number $=$ عَدَدٌ تُساعِيّ
> nonagram = نَجْمةٌ تُساعِيَّة

$$
\begin{aligned}
& \text { nonahedron = مُتَعَدِّدُ وُجوهٍ تُساعِيّ } \\
& \text { nonassociative algebra }= \\
& \text { nonassociative ring =حَقَقٌْ غَيْرٌ تَجْمِيعِيَّة } \\
& \text { nonatomic Boolean algebra }=\text { جَبْر بُول غَيْرُ الذَّرِّيّ } \\
& \text { nonatomic measure space = فَضاءُ قِياسٍ غَيْرُ ذرَيِّيّ } \\
& \text { noncentral quadric }=\text { سَطْحٌ تَرْبيعيٌ غَيْرُ مَرْكَزِيّ } \\
& \text { noncritical region }=\text { مَنْطِقةٌ غَيْرُ حَرِجة } \\
& \text { nondecreasing function = دالَّهُ غَيْرُ مُتْنَاقِصة حِّرة } \\
& \text { nondegenerate plane }=\text { مُسْنَو غَيْرُ مُترَدِّ } \\
& \text { nondenumerable set = مَجْموعةٌ غَيْرُ عَدودة } \\
& \text { nondifferentiable programming =بْمَجةٌ غَيْرٌ فَضولة } \\
& \text { nonessential singularity = نُقْطُة شُذوذٍ غير أساسِيّ } \\
& \text { non-Euclidean geometry = هَنْدَسْةٌ لاإقليديَّة } \\
& \text { nonexpansive mapping = تَطْبيقٌ غَيرُ تَمَدُدُِيّ } \\
& \text { nonholonomic constraint }=\text { قَيْدٌ غَيرُ هو لونوريّ } \\
& \text { nonillion = نونيليون } \\
& \text { nonincreasing function = دالَّةٌ لامْتَز ايدة } \\
& \text { nonlinear equation = مُعادَلةٌ لاخَطِّيّة، } \\
& \text { nonlinear programming =بَمْجةٌ لاخَطِّيّة } \\
& \text { nonlinear regression }=\text { انُكِفِّ لاءخِّيّي" } \\
& \text { nonnegative (adj) =غَيرُ سالِب لاكِيُ } \\
& \text { nonnegative integer = عَدَدٌ صَحيحٌ غَيْرُ سالِب } \\
& \text { nonomino }=\text { دومينو تُساعِيّ } \\
& \text { nonorientable surface = سَطْحُ غَيْرُ قابِلٍ للنَّوْجيه } \\
& \text { nonparametric statistics }=\text { إحصاءٌ غَيْرُ وَسيطِيّ } \\
& \text { nonperiodic decimal =عَدَد عَشْرِيٌّ غَيْرُ دَوْرِيّ } \\
& \text { nonpositive (adj) = غَيْرُ موجبر } \\
& \text { nonpositive integer = عَدَدٌ صَحَيحٌ غَيْرُ موجبر مبر } \\
& \text { nonprobabilistic sampling = اعتِيانٌ غَيْرُ احتِمالِيّ } \\
& \text { nonrecurring decimal }=\text { عَدَدٌ عَشْرْ }
\end{aligned}
$$

```
nonremovable discontinuity = انْقِطاعٌ غَيْرُ قابل للإزالة
    nonrepeating decimal = عَدَدٌ عَشْرِيٌّ غَيْرٌ تَكْرَارِيّ كِّرِّ
```



```
    nonsense correlation = ارتِباطٌ وَهْمِيّ
    nonseparable graph = بَيانٌ غَيْرٌ فَصول
    nonsingular matrix = مُصْفو فُّ غَيْرُ شاذُّةُ
nonsingular transformation = تَحْوِيل" غَيْرُ شاذّ
    nonsquare Banach space = فَصاءُ باناخ غَيْرُ مُرَّعُعْ
    nonstandard numbers = أعدادٌ غَيْرُ مِعْياريَّة
            nonterminal vertex \(=\) رَأْس" لانِهائِي"
    nonterminating decimal =عَدَدٌ عَشْرِيٌّ غَيْرُ مُنْتُهِ
    nontransitive relation = عَلاقةٌ لامْتُعَعِّيةّ
```



```
            nonzero (adj) = لاصِفْرِيّ
            norm \(=\) نَظيم
            normal bundle = حُزْمٌة ناظِمِيَّة
            normal curvature = تَقَوُسٌ ناظِمِيّ
            normal curve = الُمْحَني الطَّبيعِيّ
```



```
        normal distribution = تَوْزيعٌ طَبِيعيّ (تَوْزيعٌ نظامِيِيّ)
            normal divisor = قاسِمّ عادِيّ
        normal equations =مُعادَلاتٌ عادِيَّة
        normal extension =تَمْديدٌ عادِيّ
            normal family \(=\) جَماعةٌ عادِيَّة
            normal function = دالَّةٌ ناظِمِيَّة
            normal matrix \(=\) مَصْفوفةٌ عادِيَّة
            normal number = عَدَدٌ عادِيّ
            normal operator = مُؤتِّرٌ عادِيّ
        normal pedal curve \(=\) مُنْحَنٍ قَدَمِيٌّ ناظِمِيّ
            normal plane \(=\) مُسْنَوٍ ناظِميّ
```



```
    normal section = مُقْطع" نظمِمبّ
```



```
    normal space = فُصاءٌ عادِيّ*
```



```
    normal to a curve = ناظٌمٌ على مُنْحَنٍ
    normal to a plane = ناظِمٌ على مُسنتٌ (
    normal to a surface = ناظِمٌ على سُطْح"
    normal tower = بُرْج عادِيّ 
    normal transformation = تَحْويلٌ ناظِمِيّ ع
normal vector to a plane = مُتّجهٌ ناظِمِيٌّ على مُستْوٍ
    normalized function = دالْةٌ ناظِمِيَّة)
```



```
        normed space = فَضاءٌ مُنظّمٌ 
```



```
        notation = تَدْو\
        nought (naught) = صِفر
    nowhere dense set = مَجْموعةٌ غَيْرُ كَثيفةٍ في أيپّ مكان \
        n-space = فَصاءّ نونِّ"
```



```
        n-tuple set = مَجْموعةٌ نونيّة)
        Nu function = دالّةُ'نُو
        nucleus = نواة)
        null (adj) = صِفْبي،، مُعدوم
    null element = عُنصُرٌ صِفْريّ
    null function = دالْةٌ صِفْرِّة
    null geodesic = جيوديزِيٌّ صِفْريّ
        \mathrm{ null graph = بيانٌ صِفْريّ ص}
```

$$
\begin{aligned}
& \text { null hypothesis = الفَرْضِيَّةُ الصِّفْيَّة } \\
& \text { null matrix = مُصْفوفةٌ صِفْرَّة الْمِّةِ } \\
& \text { null measure }=\text { قِياسٌ صِفْريّ } \\
& \text { null sequence }=\text { مُتَتالِيةٌ صِفْرِيَّة } \\
& \text { null set = المَجْموعةُ الخالِية } \\
& \text { null space = الفَضاءُ الصِّفْرِيّ } \\
& \text { null tetrad matrix = مَصْفو فٌّ رُباعِيَّةٌ صِفْرِّيَّة الصريّة } \\
& \text { null vector = الُمَّجَهُ الصِّفْرِيّ } \\
& \text { nullity = الصِّفْرِّةّة } \\
& \text { number = عَدَد } \\
& \text { number field =حَقْلُ أعْداد } \\
& \text { number line =مُستْقيمُ الأعْداد } \\
& \text { number pyramid =هَرَمٌ عَدَدِيّ } \\
& \text { number scale = تَدْريجٌ عَدَدِيّ } \\
& \text { number system = مَنْظومةُ أعْداد } \\
& \text { number theory = نَظَريَّةُ الأعْداد } \\
& \text { number-theoretic function = دالَّةٌ حِسِابيَّة الْدِّ } \\
& \text { numeral }=\text { رَقْم } \\
& \text { numeral system }=\text { نظامُ تَرْقيم } \\
& \text { numeration }=\text { تَرْيم } \\
& \text { numeration system = نظامُ تَرْيم } \\
& \text { numerator }=\text { بَسْط } \\
& \text { numeric function }=\text { دالَّةٌّهُ عَدَدِّة } \\
& \text { numerical analysis = النَّحْلِيلُ العَدَدِيّ عدِّيّ } \\
& \text { numerical determinant = مُحَدِّدةٌ عَدَدِيَّة الِدِّة } \\
& \text { numerical eccentricity }=\text { تَباعُدٌٌ مَْكَزِيٌّ عَدَدِيّ عِديّ } \\
& \text { numerical equation }=\text { مُعادَلةٌ عَدَدِيَّة } \\
& \text { numerical integration }=\text { مُكامَلةٌ عَدَدِيَّة } \\
& \text { numerical phrase =عِبارةٌ عَدَدِيَّة } \\
& \text { numerical range }=\text { مَدِى عَدَدِيّّ }
\end{aligned}
$$

```
numerical space = فَضصاءٌ عَدَدِيّ"
numerical tensor = مُوتٌتٌ"
numerical value = قيمةٌ عَدَدِيَّة
```

$$
\begin{aligned}
& \text { O } \\
& \text { obelisk = جذْ ُُ هَرَمٍ قائمٍ مُنْتَمَم } \\
& \text { object = كائِن } \\
& \text { objective function = دالّْةٌ مَوْضوعِيَّة } \\
& \text { objective probabilities = احتِمالاتٌ مَوْضوعِيَّة } \\
& \text { oblate ellipsoid = مُجَسَّمٌ ناقِصِيٌّ مُفَلْطَحِ } \\
& \text { oblate spheroid = كُرْوانيُّ مُفَلْطَح } \\
& \text { oblateness = تَفَلْطُح } \\
& \text { oblique angle = زاويةٌ مائِلة } \\
& \text { oblique circular cone =مَخْروطٌ دائرِيٌّ مائِل مرِيةّ } \\
& \text { oblique circular cylinder = أُسطُورانةٌ دائِرَّةٌ مائِلةٌ } \\
& \text { oblique coordinates = إحدانِيَّانِ مائِلان } \\
& \text { oblique lines = خُطوطٌ مائِلة } \\
& \text { oblique parallelepiped = مُتوازي سُطوحِ مائِل } \\
& \text { oblique prism = مَوْشورٌ مائِل } \\
& \text { oblique pyramid = هَرَّمٌ مائِل } \\
& \text { oblique spherical triangle }=\text { مُثَلَّثٌ كُرُوِيٌّ مائِل } \\
& \text { oblique strophoid = سْتروفوئيد مائِل } \\
& \text { oblique triangle = مُثَلَّثٌ مائِل (مُثَلَّثٌ غَيْرُ قائِم) } \\
& \text { observation = مُشاهُدةِ } \\
& \text { obtuse angle = زاوِيةٌ مُنْفَرِجة } \\
& \text { obtuse triangle = مُثلَّثْ مُنْفِرِج الزاوية } \\
& \text { octad }=\text { ثُمانيَّة } \\
& \text { octagon }=\text { مُثَمَّن } \\
& \text { octagonal prism }=\text { مَوْشورٌ مُمَمَّن } \\
& \text { octahedral graph = بَيانُ ثُمانيِّ وُجوه } \\
& \text { زُمْرةُ ثُمانيَّةُ الوُجوه }
\end{aligned}
$$

$$
\begin{aligned}
& \text { رَرَمّْ ثُمانِيّ } \\
& \text { octal number system = نظامُ الحَدِّ الثُّمانيّيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { octant }=\text { تُمُنُ [فَضاءـ] } \\
& \text { octomino }=\text { دومينو ثُمانيّ } \\
& \text { octonary number system = نظامُ الحَدِّ الثُمانِيّ } \\
& \text { octonions = ثُمانيَّات } \\
& \text { odd function = دالَّلٌ فَرْدِيَّة } \\
& \text { or عُقْدةٌ فَرْدِيَّة } \\
& \text { odd number = عَدَدٌ فَرْدِيّ } \\
& \text { odd number theorem = مُبَرْنَةُ الأعْدادِ الفَرْدِيَّة } \\
& \text { odd permutation = تَبْديلّ فَرْدِيّ } \\
& \text { odd vertex = رَأْسٌ فَرْدِيّ } \\
& \text { odds ratio = نسْبُةُ الأرْجِحِيَّة } \\
& \text { ogdoad = ثُمانيّة } \\
& \text { one-dimensional strain }=\text { انْفِعالُ أُحادِيُّ البُعْد } \\
& \text { one-many function = دالَّةُ واحِدِ إلى مُتَعَدِّد } \\
& \text { one-one function = دالَّةُ واحِدٍ إلى واحِد } \\
& \text { one-parameter semigroup =نصْنُ زُمْرٍ وَحيدةُ الوَسيط } \\
& \text { رَصُّ وَحيدُ النُقطة } \\
& \text { one-sample problem = مَسْألةٌ وَحيدةُ الِيِّنة } \\
& \text { one-sided limit = نهايةٌ أُحادِيَّةُ الجانبَ } \\
& \text { one-sided surface = سَطْحٌ وَحيدُ الجحانبَ } \\
& \text { one-sided test }=\text { اختِبارٌ وَحيدُ الجانبُ رِيدُ } \\
& \text { one-tailed test (one-tail test) = اختِبارٌ وَحيدُ الذئّل } \\
& \text { or تَقُبُلُ واحدٍ لِواحِد } \\
& \text { one-to-one function = دالُّة واحِدٍ إلى واحِد } \\
& \text { one-to-one mapping = تَطْبيقُ واحدِ لِواحِد } \\
& \text { one-valued function = دالَّةٌ وَحيدةُ القيمة } \\
& \text { one-way classification = تَنْيفٌ وَحيدُ الاتّجاه } \\
& \text { open ball = كُرةٌ مَفْنو حةة } \\
& \text { open circular region = مَنْطِقٌٌ دائرِيَّةٌ مَنْنو حة } \\
& \text { open covering = تَطْيِّةٌ مَفْنو حة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { open disc = قُرٌْ مَفْنوح } \\
& \text { open half plane = نصْنُ مُسْنَوٍ مَفْتوح } \\
& \text { open half space }=\text { نصْنُ فَضاءٍ مَفْنوح } \\
& \text { open interval = مَجالُ مَفْنوح } \\
& \text { open manifold = مُتَنَوِّةٌ مَفْنو حة } \\
& \text { open map = تَطْبيقٌ مَفْنوح } \\
& \text { open mapping theorem = مبَرْهَنُة النَّطْبِقِ المُفْنوح } \\
& \text { open neighborhood = جوارٌ } \\
& \text { open polygonal region = مَنْطِقٌة مُضَلْعَةٌ مَفْنو حة } \\
& \text { open rectangular region = مَنْطِقٌُ مُسْتُطيلةٌ مَفْنوحة } \\
& \text { open region = مَنْطِقٌة مَفْتوحة } \\
& \text { open set = مَجْموعةٌ مَفْتوحة } \\
& \text { open simplex =مُبَسَّطٌ مَفْنوح }
\end{aligned}
$$

$$
\begin{aligned}
& \text { open-ended class = صَفٌٌ مَغْنوحُ الطَّرَفِّ } \\
& \text { operating characteristic curve = مُنْحَنِ العَمَلِّيَّاتِ الُمَمِيّز } \\
& \text { operation = عَمَلِيَّة } \\
& \text { operational analysis = تَحْلِيلٌ عَمَلِيَّاتِيّ } \\
& \text { operational calculus = حُسْبَانٌ عَمَلِّيَّاِيّيّ } \\
& \text { operations research = بُحوثُ العَمَلِيَّاتيُنئِ } \\
& \text { operator }=\text { مُؤتِّرّ } \\
& \text { operator algebra = جَبْرُ المُؤَتِّرات } \\
& \text { operator theory = نظَرِيَّةُ المُؤَتِّرات } \\
& \text { opposite angles = زاوَيَتانِ مُتقابِلَتان بالَّأْسِ } \\
& \text { opposite rays = شُعاعانِ مُتَعاكِسان } \\
& \text { opposite ring = حَحَقُّةٌ مُقابِلة } \\
& \text { opposite side = ضِلْعٌ مُقابِل مُعلِ } \\
& \text { opposite vertices = رَأْسانِ مُتُقابلانان } \\
& \text { oppositely congruent figures =شَكْلانِ مُتطابِقانِ عَكْمِيَّا } \\
& \text { optimal control }=\text { تَحَكُمٌ أمْثُلْ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { optimal system = مَنْومةٌ مُثْلَى } \\
& \text { optimization }=\text { استِمْثمال } \\
& \text { optimization theory = نَظَرِيَةُ الاسْتِمْثال (نَظَرِيَّةُ اخْنِيارُ الأمْنَ) } \\
& \text { optimum = قيمةٌ مُثْلَى } \\
& \text { orbit = مَدار } \\
& \text { order }=\text { مَرْتَبة } \\
& \text { order ideal = مِثالِيٌّ في مَجْموعةٍ مُرَّبَّة } \\
& \text { order interval = مَجالٌ في مَجْموعةٍ مُرَّبَّة } \\
& \text { order of degeneracy = مَرْتَبُةُ التَّرَدِّي } \\
& \text { order of magnitude = مَرْتَةُ القيمةِ المُطْلَقة } \\
& \text { order of symmetry = مَرْتَبُة التَّناظُر الُطرِ } \\
& \text { order relation = عَلاقُةُ تُرْتيب } \\
& \text { ordered field = حَقْلٌ مُرَّبَب } \\
& \text { ordered geometry = هَنْدَسةٌ مُرَّبَّة } \\
& \text { ordered n-tuple }=\text { نونيٌّ مُرَّبَبُ } \\
& \text { ordered pair = زَوْجٌ مُرَّتَبِّ } \\
& \text { ordered partition = تَجْزَئُّةٌ مُرَّبَّة } \\
& \text { رُباعِيَّةٌ مُرُبَّبَّ } \\
& \text { ordered rings =حَلَقاتٌ مُرَّبَّبة } \\
& \text { ordered set = مَجْموعةٌ مُرَّبَّة } \\
& \text { ordered structure = بنْيةٌ مُرَّبَة } \\
& \text { ordered triple = ثُثاثِيَّةُ مُرَنَّة } \\
& \text { ordered vector space = فَضاءٌ مُتَّجِيٌِ مُرَتَّب } \\
& \text { order-preserving (adj) = مُحافِظٌ على التَّرْتيب } \\
& \text { ordinal data }=\text { مُعْطَياتٌ تَرتْتيبَّة } \\
& \text { ordinal number }=\text { عَدَدٌ تَرْتِيبيّ } \\
& \text { ordinal scale = تَدْريجّ تَرُتبيبيّي }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ordinary differential equation = مُعادَلْةٌ تَفاضُلْيَّةٌ عادِيَّة } \\
& \text { ordinary generating function = دالَّةٌ مُوَّلِّدٌُ عادِيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ordinary point = نُقْطٌّ عادِيَّة } \\
& \text { ordinary singular point = نُقْةٌ شاذُةٌ عادِيَّة } \\
& \text { ordinate }=\text { إحداثِيٌّ عَيْنِيّ } \\
& \text { orientable surface = سَطْح قابل" للتَّوْجيه } \\
& \text { orientation }=\text { تَوْجيه } \\
& \text { oriented graph = بَانٌ مُوَجَّهُ وَحيدُ الاتِّجاه } \\
& \text { oriented simplex =مُبَسَّطُ مُوَجَّهُ } \\
& \text { oriented simplicial complex = مُجَمَّعُ مُبَسَّطاتٍ مُوْجَّهُة } \\
& \text { origin = نُقْطُ الأصْل } \\
& \text { orthocenter = مُلْتَقَى الارْتِفاعات } \\
& \text { orthogonal (adj) }=\text { مُتعامِد } \\
& \text { orthogonal basis = قاعِدةٌ مُتُعامِدة } \\
& \text { orthogonal circles = دائِرَتانٍ مُتُعامِدَتَان } \\
& \text { orthogonal complement =مَتُمِّمٌ مُتعَامِد }
\end{aligned}
$$

$$
\begin{aligned}
& \text { orthogonal family = جَماعةٌ مُتعَعِمدة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { orthogonal group = زُمْرَّ مُتعامِدة } \\
& \text { orthogonal lines = مُسْتَتيمانِ مُتْعَامِدان } \\
& \text { orthogonal matrix = مَصْفو فُّةٌ مُتعامِدة } \\
& \text { orthogonal polynomial = حُدودِيَّةٌ مُتُعامِدة } \\
& \text { orthogonal projection = إسقاطٌ عَمودِيّ } \\
& \text { orthogonal series = مُتَسَلْسِلةٌ مُتَعامِدة } \\
& \text { orthogonal set = مَجْموعةٌ مُتعامِدة } \\
& \text { orthogonal spaces = فَضاءانِ مُتُعامِدان } \\
& \text { orthogonal subspaces = فَضاءانِ جُزْئَيَّانِ مُتُعامِدان }
\end{aligned}
$$

$$
\begin{aligned}
& \text { orthogonal system = مَنْورمةٌ مُتَعَمِدة مُمِّة } \\
& \text { orthogonal tensors = مُوتِّرانِ مُتُعامِدان مُمِّن }
\end{aligned}
$$

```
    orthogonal trajectory = مَسارٌ عَمودِيّ 
\mathrm{ تrحْويلٌ عَمودِيّ = =rthogonal transformation }
```



```
        orthogonality = تُعامُد
    orthogonalization = مُعامُدة
    orthographic projection = إسقاطٌ عَمودِيّ 
    orthonormal basis = قاعدةٌ مُتع⿰亻⿱丶⿻工二又⿴囗⿱一一大么
```



```
        \mathrm{ دوالُّ مُتعامِةٌ مُنظهُمة)}
        orn\mp@code{man}
            orthoptic curve = مُنْحَن تَعامُدٍ
```



```
        osculating circle = دائرةٌ مُلاصِقة)
        on
            osculating plane = مُستْو مُ(اصق 
```



```
            \mathrm{ F}
```



```
            ovonter measure = قِي
            outer product = جُداء خارِّيّ*
```



```
            outlier = قيمةٌ مُنْعز)
```



```
    ovals of Cassini = بْيُوْيَّاتُ كاسيني
        over-ring = فوْقَ حَلَقة 
```

$$
\begin{aligned}
& \text { Padovan sequence = مُتتالِيةُ بادو ڤان } \\
& \text { Painlevé's theorem = مُبْهَنَةُ پانلوفيهن بادفَ } \\
& \text { pair }=\text { زَوْج } \\
& \text { pair (v) = يُزاوِج } \\
& \text { paired vector spaces = فَضاءانِ مُتَجِهِيَّانِ مُتُز اوِجانِ } \\
& \text { pandigital fraction =كَرْ شامِلُ الأرْقام } \\
& \text { pandigital number = عَدَدٌ شامِلُ الأرْقام } \\
& \text { Pappian plane = مُسْتُو پايوسيّ } \\
& \text { Pappus chain = سِلْسِلةُ پֶايوس } \\
& \text { Pappus theorem =مُبرْهَنُةُ پايوس يارس } \\
& \text { parabola = قَطْعٌ مُكافِئُ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { parabolic cylinder = أُسطُو انةٌ مُكافِئِّةَ } \\
& \text { parabolic cylinder functions = دوالُّ أُسْطُورانيَّةٌ مُكافِئِّةُ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { parabolic point = نُقْطٌُ مُكافِئِيَّة } \\
& \text { parabolic Riemann surface =سَطْحُ ريمان الُمكافِئِيّ } \\
& \text { parabolic rule }=\text { قاعِدةٌ مُكافِيَّيَّة } \\
& \text { parabolic segment = قِطْةٌ مُسْتَقيمةٌ مُكافِئِيَّة } \\
& \text { parabolic spiral }=\text { حَلَزونٌ مُكافِئِيّ } \\
& \text { parabolic type = نَمُطُ مُكافِيْيَيّ } \\
& \text { paraboloid = مُجَسَّمٌ مُكافِئِيّ مُكيّ } \\
& \text { paraboloid of revolution = مُجَسَّمٌ مُكافِيْيٌّ دَوَرانِيّ } \\
& \text { paracompact space }=\text { فَضاءٌ ثِبْهُ مُترَ اصرّ } \\
& \text { paradox = مُحِيِّة } \\
& \text { parallel }=\text { مُوازٍ } \\
& \text { parallel axiom = مْوضوعةُ التُّوازي } \\
& \text { parallel circles = دَوائِرُ مُتُوازِية } \\
& \text { parallel curves = مُنحَنيانِ مُتُوازيان }
\end{aligned}
$$

$$
\begin{aligned}
& \text { parallel line and plane = تَوازي مُسْتْقِمٍ وَمُسْنٍوٍ } \\
& \text { parallel lines = مُسْتَيمانٍ مُتُوازيان } \\
& \text { parallel planes =مُستْوِيانٍ مُتُوازِيان } \\
& \text { parallel postulate =مُسَلَّمةُة النَّونويازي } \\
& \text { parallel projection = إسقاطٌ مُتُوازٍ } \\
& \text { parallel rays = شُعاعانِ مُتوازيان } \\
& \text { parallel section = مَقْطَعٌ مُوازٍ } \\
& \text { parallel surfaces = سَطْحانِ مُتوزازيان } \\
& \text { parallel vectors = مُتَّجهانِ مُتوازيان } \\
& \text { parallelepiped = مُتو ازي سُطوح } \\
& \text { parallelogram }=\text { مُتوازي أضْلا ع } \\
& \text { parallelogram illusion }=\text { خِداعُ مُتُوازي الأضْلا } \\
& \text { parallelogram law }=\text { قانونُ مُتوازي الأضْنا } \\
& \text { parallelogram of periods =مُتوازي أضْلاع الأدْوار }
\end{aligned}
$$

$$
\begin{aligned}
& \text { parallelopiped }=\text { مُتوازي سُطوح } \\
& \text { parallelotope = مُتوازي سُطوحِ تَضاعُفِيّ مُوِّ } \\
& \text { parameter = وَسيط } \\
& \text { parameter of distribution = وَسيطُ التَّوْزيع } \\
& \text { parametric equations = مُعادَلاتٌ وَسيطِيَّة } \\
& \text { parametric statistics = الإحصاءُ الوَسيطِيّ } \\
& \text { parentheses = قَوْسانِ هِلالِيَّان } \\
& \text { parity = زَوْجيَّة (شَفْمِيَّة) } \\
& \text { Parseval's equality = مُساواةُ پارْسيڤال } \\
& \text { Parseval's equation = مُعادَلةُ پارْسيڤفال } \\
& \text { Parseval's identity =مُتطابقةُ پارْسِيڤال } \\
& \text { Parseval's integral = تَكامُلُ پارْسيڤال بارنال } \\
& \text { Parseval's relation = عَلاقةُ بارْسيڤًال بارْلَ } \\
& \text { Parseval's theorem = مُبْرَهْنُة پارْسيڤفال بارْل }
\end{aligned}
$$

$$
\begin{aligned}
& \text { partial correlation = ارتِباطٌ جُزْئيّ" } \\
& \text { partial correlation analysis =تَحْليلُ ارْتِباطٍ جُزْئيّي" } \\
& \text { partial correlation coefficient =مُعامِلُ ارْتباطٍ جُزْئيّي" } \\
& \text { partial derivative }=\text { مُشْتُقُّ جُزْبُئيّ } \\
& \text { partial differential coefficient =مُعامِلْ تَفَاضُلٍ جُزْبُيْي" }
\end{aligned}
$$

$$
\begin{aligned}
& \text { partial fractions =كسورٌ جُزْئئَة } \\
& \text { partial order =تَنْتيبٌ جُزْيُيّ" } \\
& \text { partial ordering = تَرْتيبٌ جُزْبُيْي" } \\
& \text { partial plane }=\text { مُسْنَرٍ جُزْئِيّي } \\
& \text { partial product }=\text { جُداءٌ جُزْئئيّي }
\end{aligned}
$$

$$
\begin{aligned}
& \text { partial sum }=\text { مَجْموعٌ جُزْيْيّيّي } \\
& \text { partially ordered set =مَجْموعةٌ مُرَّبَّةٌ جُزْئِئَّا } \\
& \text { particular integral = تَكامُلْ خاصّ } \\
& \text { particular solution = حلّ خاصّ } \\
& \text { partition }=\text { تَجْزِئة } \\
& \text { partition of unity = تَجْزِئُةُ الوَحْدَة } \\
& \text { Pascal distribution =تَوْيعُ پِسْكال } \\
& \text { Pascal identity = مُتُطابقةُ پֶاسْكال }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Pascal triangle = مُثلَّثُثُ پِاسْكال } \\
& \text { Pascal's limaçon = صَدَفُةُ پِاسْكال بِّال } \\
& \text { Pasch's axiom = مَوْضوعةُ پاش } \\
& \text { path = مَسار } \\
& \text { path graph = بَيانٌ مَساريّ } \\
& \text { path integral = تَكاملٌ على مَسار } \\
& \text { path-connected set =مَجْموعةٌ مُتَرابِطةٌ مَسارِيًّا }
\end{aligned}
$$

$$
\begin{aligned}
& \text { path-connected space = فَضاءٌ مُتَر ابطُ مَسارِيًّا (قَوْسِيًّا) } \\
& \text { pathwise-connected set = مَجْموعةٌ مُترَابطةٌ مَساريَّا } \\
& \text { Peano continuum = مُتَّصُلُ بِيانو } \\
& \text { Peano curve }=\text { مُنْحَنِ بِيانو } \\
& \text { Peano space = فَضاءُ بِيانو } \\
& \text { Peano surface =سَطْحُ يِبانو } \\
& \text { Peano's axioms =مْضوعاتُ بِيانو } \\
& \text { Peano's postulates = مُسَلّْماتُ بِيانو } \\
& \text { Pearl-Reed curve =مْنحَني بيرْل-ريد } \\
& \text { pear-shaped curve = مُنْحَ إجَّاصِيُّ الشَّكَّلْ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Peaucellier's cell = خَحِيَّةُ يو سلييه } \\
& \text { pedal circle = دائرِةٌ قَدَمِيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { pedal curve }=\text { مُنْحَنٍ قَدَمِيّيّ } \\
& \text { pedal equation = مُعادَلةُ قَدَمِيَّة } \\
& \text { pedal line = مُسْتَيمٌ قَدَمِيّ } \\
& \text { pedal point }=\text { نُقْةُ قَدَمِيَّة } \\
& \text { pedal triangle }=\text { مُتْلُّثٌ قَدَمِيّ قِيْ } \\
& \text { Peirce stroke relationship =عَلاقةُ شَوْطِ بيرس } \\
& \text { Pell equation =مُعادَلةُ بِّل } \\
& \text { pencil }=\text { حُزْمة } \\
& \text { pendulum property = خاصِيَّةُ النَّوَّاس (خاصِّيَّةُ البَنْدول) } \\
& \text { peninsula surface = سَطْحٌ شِبْهُ جَزيريّ } \\
& \text { Penrose impossible staircase }=\text { دَرَجُ بنروز المُسْتَحِيلِ } \\
& \text { Penrose triangle = مُثْلَّثُ يِنروز } \\
& \text { pentacle = نَجْمٌ خُماسِيَّة } \\
& \text { pentad =خُماسِيَّة } \\
& \text { pentadecagon = خَحْسَ عَشْرِيّ } \\
& \text { pentagamma function = دالَّةُ غاما الخُماسِيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { pentagon = خُماسِيّ، مُخْمَّس } \\
& \text { pentagonal number = عَدَدٌ خُماسِيّ } \\
& \text { pentagonal prism =مَوْشورٍ خُماسييّ } \\
& \text { pentagonal pyramid =هَرَمٌ خُماسِيّ } \\
& \text { pentagonal pyramidal number =عَدَدٌ هَرَمِيٌ خُماسِيّ } \\
& \text { pentagram = نَجْمةٌ خُماسِيَّة } \\
& \text { pentahedron = مُتَعَلِّدُ وُجوهٍ خُماسِيّ } \\
& \text { pentalpha = نَجْمْةٌ خُماسِيَّة } \\
& \text { pentangle = نَجْمةٌ خُماسِيَّة } \\
& \text { pentomino }=\text { دومينو خُماسِيّ } \\
& \text { percentage = نسْبْةٌ مِئوِيَّة } \\
& \text { percentage distribution =تْزُيعٌ بِنسْبٍ مِئَوِيَّة } \\
& \text { percentile }=\text { مئِينيّي" } \\
& \text { perfect (adj) = كامِل (تام) } \\
& \text { perfect cube = مُكَّبْ كامِل (مامل } \\
& \text { perfect field = حَقْلٌ كامِل كِلم } \\
& \text { perfect group = زُمْةُ كامِلة (زُمْرُّ تامَّة) } \\
& \text { perfect matching = مُواءَمُّ كامِلة } \\
& \text { perfect number = عَدَدٌ كامِل (عَدَدٌ تامّ) } \\
& \text { perfect power = قُوَّةٌ كامِلة } \\
& \text { perfect proportion = تُناسُبٌ تامٌ } \\
& \text { perfect rectangular = مُسْتُطيلٌ تامّ } \\
& \text { perfect set = مَجْموعةٌ كامِلة } \\
& \text { perfect square = مُربَّعٌ كامِل (مُربَّعٌ تامّ) } \\
& \text { perfect trinomial square = مُربَّعٌ كامِلُ ثُلاثِيُيُ الحُدودي } \\
& \text { perfectly separable space =فَضاء فَصولٌ تَمامًا } \\
& \text { perigon = زاويةٌ كامِلة } \\
& \text { perimeter = طولُ مُحيط، مُحيط } \\
& \text { period }=\text { دوْر } \\
& \text { period in arithmetic =دورٌ في عِلْمِ المِساب }
\end{aligned}
$$

$$
\begin{aligned}
& \text { period parallelogram = مُتوازي أضْلاع الأذْوار } \\
& \text { periodic (adj) = دَوْريّ } \\
& \text { periodic continued fraction =كسْرٌ تَسَلْسُلِيٌّ دَوْرِي"ّ } \\
& \text { periodic decimal =عَثْريٌّ دَوْريّ } \\
& \text { periodic function = دأَلٌْ دَوْرَيَّة } \\
& \text { periodic matrix = مُصْفوفةٌ دَوْرِيَّة } \\
& \text { periodic point = نُقْطٌٌ دَوْرِيَّة } \\
& \text { periodic sequence = مُتتالِيلٌة دوَرْيَّة } \\
& \text { periodicity }=\text { دَوْرَيَّة } \\
& \text { periodogram = مُخَطُّطُ الأدْوار } \\
& \text { periphery = مُحيط } \\
& \text { permanently convergent series = مُتَسَلْسلةٌ مُتُقاربةٌ دائمًا } \\
& \text { permissible values of a variabl = قِيَمْ مُتَاحةُّ لِمْتَغَيِّر } \\
& \text { permutation }=\text { تَبْديل } \\
& \text { permutation group =زمْرَة تُباديل } \\
& \text { permutation matrix = مَصْفوفةُ تَباديل } \\
& \text { perpendicular =عَمود } \\
& \text { perpendicular (adj) = مُتَعامِد، عَمودِيّ } \\
& \text { perpendicular bisector =مُنصِّفٌ عَمودِيّ (مِحْوْر) } \\
& \text { perpendicular distance = مَسافةٌ عَمودِيَّة } \\
& \text { perpendicular foot = مَوْقِقُع العَمود } \\
& \text { Perrine sequence = مُتتالِيةُ بيرين } \\
& \text { Perron-Frobenius theory = نَظَرِيَّةُ يِرون-فروبينيوس يرئِ } \\
& \text { personal probability = احتِمالٌ شَخْصِيّ } \\
& \text { perspective position = رضْعٌ مَنظورِي" }
\end{aligned}
$$

$$
\begin{aligned}
& \text { perturbation = اضطِراب } \\
& \text { perturbation theory = نَظَريَّةُ الاضْطِرِ باب } \\
& \text { Peters' formula = صيغةُ بيتر } \\
& \text { Peterson graph = بَيانُ يترْنُنُ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Pfaffian differential equation = مُعادَلةُ ْنَاف التَّفاضُلِيَّة } \\
& \text { Pfaffian form = صيغةُ بْفاف } \\
& \text { phase }=\text { طَرْر } \\
& \text { phi function = دالَّةُ فايْ } \\
& \text { philosophical logic = مَنْطِقٌ فَلْسَفِيّ } \\
& \text { Picard method = طَيقةُ بيكار } \\
& \text { مُبَرْهَنُة بيكار الكُبْرَى } \\
& \text { Picard's first theorem =مُبرْهَنُةُ بيكار الأُولَى } \\
& \text { Picard's little theorem =مُرَهْتُةُ بِكار الصُّغْرَى } \\
& \text { Picard's second theorem =مْرَهْنَةُ بيكار الثَّانِية } \\
& \text { pie chart = مُخَطَّطٌ دائرِيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { piecewise-linear (adj) = خَطِّيٌّ قِطَيِّيًا } \\
& \text { piecewise-linear topology = طبولو جيا خَطِّيّةٌ قِطَعِيَّا } \\
& \text { piecewise-smooth curve = مُنحَنِ أمْلَسُ قِطْمِيَّا } \\
& \text { pigeonhole principle = مَبْدًُ بُرْنج الحَمام } \\
& \text { pivot theorem = مُبْهَنَةُ المِحْوَرَ } \\
& \text { pivotal condensation = تَكْيفٌ مُتَمَحْوِر } \\
& \text { pivoting }=\text { تَمَحْوْرُرُ } \\
& \text { place = مَنْ لة، مَوْضِع، مَوْقِع } \\
& \text { place value = قيمةُ المَزْلة } \\
& \text { place-value notation = تَدْوينُ قيمةٍ مَنازِلًِّا } \\
& \text { planar graph = بَيانٌ مُسْنَوٍ } \\
& \text { planar point = نُقْطٌُ مُسْتُوِيةً } \\
& \text { plane }=\text { مُسْنْوٍ } \\
& \text { زاوريةٌ مُسْتَوِية } \\
& \text { plane curve = مُنْحَنٍ مُسْنَوٍ } \\
& \text { plane cyclic curve = مُنحَنٍ دَوْرِيٌّ مُسْتُوٍ } \\
& \text { plane division by circles }=\text { ناتِجُ تَقْسيمِ مُسْتُوٍ بدَوَ ائر } \\
& \text { plane division by ellipses = ناتِجُ تَقْسِمِ مُسْنَوٍ بقُطور ع ناقِصة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { plane division by lines }=\text { ناتِجُ تَقْسيمِ مُسْتْوٍ بمسْتَيمات } \\
& \text { plane field =حَقْلٌ مُسْنَوٍ } \\
& \text { plane geometry = المَنْدَسُُ المُسْتْوِية } \\
& \text { plane graph = بَيانٌ مُمُنْوِ } \\
& \text { plane of mirror symmetry =مُسْتوي تَناظُر مِرْآوِيٌٌ } \\
& \text { plane of reflection = مُستْوِي انْعِكاس } \\
& \text { plane of support = مُسْتْ حامِل } \\
& \text { plane of symmetry =مُسْتُوي تَناظُر } \\
& \text { plane polygon = مُضَلَّعٌ مُسْتْوِ } \\
& \text { plane quadrilateral =رُباعِيُ أضْلا عِ مُسنترٍ } \\
& \text { plane section = مَقْطُع مُسْنْوٍ } \\
& \text { plane trigonometry = عِلْمُ المُلْثَّناتِ المُسْتْوِيةٍ } \\
& \text { planimeter }=\text { مِمْساح } \\
& \text { Plateau curve }=\text { مُنْحَني پْلاتو } \\
& \text { Plateau problem = مَسْألةُ هْلاتون بِّاتو } \\
& \text { Plateau's equation = مُعادَلُّةُ چْلاتو } \\
& \text { platonic graph = بَيانٌ أفلاطوينّ } \\
& \text { platonic solid = مُجَسَّمٌ أفلاطوليّ } \\
& \text { platykurtic distribution = تَوْزيعٌ شَديدُ التَفَلْطُح } \\
& \text { platykurtic distribution =تَوْزيعٌ مُسَطُّح } \\
& \text { Playfair's axiom = مْضضوعةُ پْليفير } \\
& \text { Plemelj formulas = صيغَتا پْليمِلج } \\
& \text { plot }(v)=\text { يَرْمُمُ نُقَطِيًّا، يُعِيِّنُ مَوْفِقَقًا } \\
& \text { plus sign = إشارةُ الزَّائِد } \\
& \text { Pochhammer symbol =رَزْ يُوخْهْمَرُ } \\
& \text { Pockels equation = مُعادَلَّةُ يو كِلْز } \\
& \text { Poincaré conjecture = مُخَمَنَّةُ يوانْكاريه } \\
& \text { Poincaré recurrence theorem = مبرْهَنَةُ التَّكْرْ لِبِوَانْكاريهُ } \\
& \text { تَوْطِئُة بوا نْكاريه } \\
& \text { Poinsot's spiral = حَلَزونُ يوانْسو }
\end{aligned}
$$

$$
\begin{aligned}
& \text { point }=\text { نُقْطة } \\
& \text { point at infinity = النُّتْطةُ في اللانهاية } \\
& \text { point estimates }=\text { تَقْديراتٌ نُقَطِيَّة } \\
& \text { point evaluation }=\text { تَقْييمٌ نُقَطِيّ } \\
& \text { point function = دالَّهُ نُقَطِيَّة } \\
& \text { point measure =قِياسٌ نُقَطِي" } \\
& \text { point of contact = نُقْطُة تَماسّ } \\
& \text { point of division = نُقْطُّ تَقْسيم (نُقْطةٌ قُاسِمة) } \\
& \text { point of inflection }=\text { نُقْطةُ انْعِطاف } \\
& \text { point of osculation }=\text { نُقْطةُ تَاصُقُ } \\
& \text { point of tangency }=\text { نُقْطةُ تَماسَّ } \\
& \text { point process }=\text { إجر ائيَّةٌ نُقَطِيَّة نِّنِّ } \\
& \text { point-spectrum =طْفِّ نُقَطِيّ } \\
& \text { point-to-set mapping = تَطْبيقٌ من نقاطٍ إلى مَجْمْوعات } \\
& \text { Poisson brackets = قَْْسا پْواسون } \\
& \text { Poisson density functions = دَوالُ الكَثافةِ لِيْو اسون ونو } \\
& \text { Poisson differential equation = مُعادَلةُ تْو اسون التَّفاضُكِلَّة الِّ } \\
& \text { Poisson distribution =َوْزيعُ نْو اسون } \\
& \text { Poisson formula = صيغةُ يْواسون } \\
& \text { Poisson index of dispersion = دَلِلُ پْو اسون للتَّشَتُّت } \\
& \text { Poisson integral = تَكامُلُ پْو اسون } \\
& \text { Poisson kernel =نَاةُ پْواسون } \\
& \text { Poisson process = إجر ائِيَّةُ پْو اسون } \\
& \text { Poisson random variable }=\text { مُتَغِيِّر پْو اسون الحَشْوْ ائيّيّ } \\
& \text { Poisson transform }=\text { مُحَوِّلُ پْوْاسون } \\
& \text { Poisson's equation =مُعادَلةُ پْو اسون } \\
& \text { Poisson's summation formula = صيغةُ الجَمْعَ لِبْو اسون } \\
& \operatorname{polar}(a d j)={ }^{\text {قُطبِبيّ }} \\
& \text { polar angle }=\text { زاوِيةٌ قُطْبَّة } \\
& \text { polar axis = مِحْوَرْ قُطْبيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { polar coordinates = إحداثِيَّانِ قُطْبَيَّان } \\
& \text { polar equation = مُعادَلّْةٍ قُطْبَيَّة } \\
& \text { polar form = صيغةٌ قُطْبِيَّة } \\
& \text { polar normal = ناظِمٌ قُطْبيّ } \\
& \text { polar planimeter = مِمْساحٌ قُطْبِيّ } \\
& \text { polar subnormal }=\text { تَحْتَ ناظِمٍ قُطْبِيّ } \\
& \text { polar subtangent =تَحْتَ مُماسِّ قُطْبِي" } \\
& \text { polar tangent = مُماسٌّ قُطْبِّ } \\
& \text { polar triangle = مُثَلّْثٌ قُطْبِيّ } \\
& \text { polar-reciprocal curves = مُنْحَنِانِ مُتَعاكِسانِ قُطْبِيًّا } \\
& \text { pole }=\text { قُطْب } \\
& \text { Polish space = فَضاءٌ بولونيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { polyabolo = مُتَعَدِّدُ المُثْثُناتِ الثقائِمة } \\
& \text { polyalgorithm =مُتَعَلِّدُ الخُوارِزْمِيَّات } \\
& \text { polydisk = مُتَعَدِّدُ الأقْرَ اص }
\end{aligned}
$$

$$
\begin{aligned}
& \text { polygon = مُضَلَّع } \\
& \text { polygon of vectors = مُضَلَّعُ مُتَّجهات } \\
& \text { polyhedral angle = } \\
& \text { polyhedron = مُتَعَدِّدُ وُجوه } \\
& \text { polyhex = مُتَعَدِّدُ المُمَدَّسَسات }
\end{aligned}
$$

$$
\begin{aligned}
& \text { polyking = مُتَعَدِّدُ المُرَبَّعات الاتِ ع } \\
& \text { polylogarithm = مُتَعَدِّدُ اللُّغارتْمات مرِّطات } \\
& \text { polymodal distribution = تَوْزيعٌ مُتَعَلِّدُ المِنْو الات } \\
& \text { polynomial =حُدودِيَّة (كَثيرُ حُدود) } \\
& \text { polynomial equation = مُعادَلةٌ حُدوردِيَّة } \\
& \text { polynomial function = دالَّةٌ حُدودِيَّة } \\
& \text { polynomial root }=\text { جَذْرُ حُدورِيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { polynomial sequence = مُتنالِيةٌ حُدو دِيَّة } \\
& \text { polyomino = دومينو مُتَعِدِّدُ المُرَّعَات حُوِّ } \\
& \text { polyplet }=\text { مُتْعَدِّدُ المُرَبَّعات } \\
& \text { polytope = مُجَسَّمٌ نونيُّ الأبْعاد } \\
& \text { Poncelet circle = دائرةُ پونْسوليه } \\
& \text { Ponzo's illusion = خِداعُ پونْزو } \\
& \text { pooled sum of squares =مَجْموعٌ مُجَمَّعٌ من الُُرَبَّعات مِّنُ } \\
& \text { pooled variance }=\text { تَبُيُنٌ مُجَمَّعَع } \\
& \text { pooling of error = تَجْميعُ الخَطَأُ } \\
& \text { population }=\text { مُجْتَمَعٌ إحْصائِيّ } \\
& \text { population covariance }=\text { تَغايُرُ مُجْتْمَعٍ إحْصائِيّ } \\
& \text { population mean }=\text { مُتَوَسِّطُ (وَسَطُ) مُجْتَمَعِع إحْصائِيّ } \\
& \text { population variance }=\text { تَبايُنُ مُجْتْمَعِ } \\
& \text { poset }=\text { مَجْموعةٌ مُرُتَّبٌة جُزْئيَّا } \\
& \text { position vector = مُتَّجهُ المَوْضِعِ مُنِّهُ } \\
& \text { positional notation }=\text { تَدْوينٌ مَوْضِعِيّ } \\
& \text { positive (adj) = موجب } \\
& \text { positive angle = } \\
& \text { positive axis = مِحْوَرْ موجب } \\
& \text { positive correlation =ارتِباطٌ مو جبر مو } \\
& \text { positive definite kernel = نَو اةٌ مُعَرَّفّةٌ مو جبة موتِ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { positive direction = اتِّجاهٌ موجبٌ } \\
& \text { positive distribution }=\text { تَوْزيعٌ موجِبٌ } \\
& \text { positive infinity }=\text { لانهايةٌ مو جبة } \\
& \text { positive integer =عَدَدٌ صَحيحٌ موجبُّ } \\
& \text { positive linear functional = دالِّيٌّ خَطِّ موٌّ موجبٌ } \\
& \text { positive number = عَدَدٌ موجبِ } \\
& \text { positive orthant = الثُّمُنُ الموجبُ كِلْفَضاء }
\end{aligned}
$$

$$
\begin{aligned}
& \text { positive part = الجُزْءُ الموجب } \\
& \text { positive pedal curve = مُنحَنٍ قَدَمِيٌّ موجْبِ } \\
& \text { positive real function = دالْةٌ حَقيقِيَّةٌ موجبِ } \\
& \text { positive semidefinite kernel = نَواةٌ نصْفُ مُعرَّةٍةٍ مو جبة مورِ } \\
& \text { positive series = مُتَسَلْسلةٌ موجبة مورِّ } \\
& \text { positive set = مَجْموعةٌ موجبة } \\
& \text { positive sign = إشارةُ الزَّائِد (إشارةُ الموجبَ) } \\
& \text { positive similarity point = نُقْطُةُ التَّشابُّهِ الموجب المُبِ } \\
& \text { positive skewness = الْتِواءٌ موجب المُب } \\
& \text { positively homogeneous function = دالُةٌ مُتجانسةٌ إيجابيَّا } \\
& \text { posterior distribution = تَوْزيُ بَعْدِيّ (تَوْزيعٌ لاحِق) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { postulate }=\text { مُسَلَّمة } \\
& \text { potential function = دالَّةٌ كُمُونيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { potential transform = مُحَّلِّلٌ كُمونيّ اكِّ } \\
& \text { power }=\text { قُوَّة } \\
& \text { power efficiency = فَعَّالِيَةُ قُوَّة } \\
& \text { power function = دالَّةُ قُوَة } \\
& \text { power of the continuum =قُوَّةُ المُنصِل } \\
& \text { power residue = راسِبُ قُوَّة } \\
& \text { power rule = قاعِدةُ القُوَّة } \\
& \text { power series = مُتَسَلْسلةُ قُوُى } \\
& \text { power set =مَجْموعةُ قُوُى (مَجْموعةُ أَجزاء مَجْموعة) } \\
& \text { precedence = أسبَقِّيَّة } \\
& \text { precision }=\text { دِّةّة } \\
& \text { precompact set = مَجْموعةٌ سابقةُ النَّراصّ } \\
& \text { predecessor = سابِق } \\
& \text { prefix notation = تَدوْ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { premultiplication = ضرَبْ } \\
& \text { price index =مُوَشِّرُ الأسْعار } \\
& \text { price relative = نسْبةُ السِّعْر } \\
& \text { primality test = اختِبارُ الأوَّلَّيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { primary submodule = مودولٌ جُزْئِيٌّ أوَّكِيّ اُوِّ } \\
& \text { prime = أوَّليّيّي } \\
& \text { prime direction = اتِّجاهٌ أوَّليّيّ } \\
& \text { prime divisor = قاسِمٌ أولَّليّي } \\
& \text { prime element = عُنصُرٌ أولَّليّ } \\
& \text { prime factor = عامِلِ أوَّكِّيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { prime field = حَقْلٌ أوَّليّ } \\
& \text { prime ideal }=\text { مِثالِيٌّ أوَّليّيّي }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مُبرْهَنةُ الأعْدادِ الأوَّرَيَّة } \\
& \text { prime polynomial =حُدو دِيَّةٌ أوَّلِّيَّة } \\
& \text { prime ring }=\text { حَلَقٌةٌ أورَّيَّة } \\
& \text { primitive abundant number =عَدَدٌ زائِدٌ أصْلِيّ } \\
& \text { primitive circle = دائرةٌ أصْلِيَّة اصِّي } \\
& \text { primitive curve = مُنْحَنٍ أصْلِيّ } \\
& \text { عُنْصُرٌ أصْلِيّ (عُنْصُرٌ أساسي) } \\
& \text { primitive function = دالَّةٌ أصْلِّلَّة } \\
& \text { primitive period = دَوْرٌ أساسِيّ (دَوْرٌ رُيَيسيّ) } \\
& \text { primitive plane = مُسْنَو أصْلِيّ } \\
& \text { primitive polynomial =حُدو دِيَّةٌ أصْلِيَّة } \\
& \text { primitive pseudoperfect number = عَدَدٌ أصْلِيٌّ شِبْهُ كامِل } \\
& \text { primitive root }=\text { جَذْرٌ أصْلِيّ } \\
& \text { primitive root of unity }=\text { جَذْرٌ أصْلِيٌّ لِلْو احِد } \\
& \text { principal axis }=\text { مِحْورْ رَئيسِيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { principal branch = فَّعٌ رَئيسي" } \\
& \text { principal curvatures = تَقُوُسانِ رَئيسيَّان } \\
& \text { principal diagonal }=\text { قُطْرٌ رئيسِيّ } \\
& \text { principal directions }=\text { اتّجاهانٍ رئيسيَّاني } \\
& \text { principal domain = مْنْقِةٌ رَئيسيَّة } \\
& \text { principal homomorphism =تَاكُلْ رُئيسِيّ ريّيّة } \\
& \text { principal ideal }=\text { مِنالِيٌّ رَئيسِيّ } \\
& \text { principal ideal domain = مَنطقِةُ مِثالِيَّاتٍ رَئيسيَّة } \\
& \text { principal ideal ring = حَلَقُُ مِالِيَّاتٍ رئيسيَّة } \\
& \text { principal minor }=\text { صُغَيْرٌ رئيسِيّ ريّي } \\
& \text { principal normal = ناظِّمٌ رَئسِيٌ (ناظِمٌ أساسيّ) } \\
& \text { principal normal indicatrix = دَيلُ النَّاظِمِ الرُّئيسيّ } \\
& \text { principal normal section = مَقْطَعُ النَّاظِمٌ الرَّئَيسِيّ } \\
& \text { principal part = الجُزْءُ الرَّئيسيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { principal period }=\text { دَوْرٌ رُيسِي" } \\
& \text { principal phase }=\text { طَرْرٌ رَئسِيّ ريّيِّ } \\
& \text { principal plane = مُسْتِو رَئيسيّ } \\
& \text { principal radii }=\text { نصْفا قُطْرَنْ رئيسِيَّيْنِ } \\
& \text { principal root }=\text { جَذْرٌ رُئيسيّ } \\
& \text { principal section }=\text { مَقْطَعٌ رَئيسِيّ ريّيٌ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { principal value }=\text { قيمةٌ رئيسيَّة } \\
& \text { principle of duality = مَبْدًا الثنّونِّيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { principle of the minimum = مَبْدُُٔ القيمةِ الصَُّرْكَى } \\
& \text { prior distribution = تَوْزيعٌ قَبْلِيّ (تَوْزيعٌ سابِّ) } \\
& \text { prior probabilities = احتِمالاتٌ قَبْلِيَّة (احِتمالاتٌ ساتِّقَة) } \\
& \text { prism = مَوْشور }
\end{aligned}
$$

$$
\begin{aligned}
& \text { mrismatic surface =سَطْحٌ مَوْشورِيّ } \\
& \text { prismatoid =مَوْشورٌ مُتُوازي الوَجْهْيْن } \\
& \text { prismoid = شِبْهُ مَوْشور } \\
& \text { prismoidal formula = صيغة شِبْهِ المَوْنور } \\
& \text { probabilistic sampling = اعتِيانٌ احتِمالِيّ } \\
& \text { probability = احتِمال } \\
& \text { probability density function = دالُّةُ كَثافةِ الاحِْْمال } \\
& \text { probability function = دالَّةُ احْنِمال } \\
& \text { probability limit = نهايةُ احْنِمال } \\
& \text { probability mass function = دالُّةُ كُْلَةِ الاحْتِمال } \\
& \text { probability measure }=\text { قِياسُ احْتِمال } \\
& \text { probability paper = ورَقُةُ رَسْمٍ للاحْتِمالات } \\
& \text { probability sampling = اعتِيانُ الاحتِمال } \\
& \text { probability space = فَضاءٌ احْتِمالِي" الاحيّ } \\
& \text { probability theory = نَظَرِيَّةُ الاحْنِمالات } \\
& \text { problem of nontaking rooks = مَسْألةُ الرِّخاخ (القِلاع) الا } \\
& \text { problem of type = مَسْألةُ النَّمَط }
\end{aligned}
$$

$$
\begin{aligned}
& \text { problème des recontres = مَسْألةُ التَّلاطي } \\
& \text { Proclus' axiom = مَوْضوعةُ چْرو كْلاس } \\
& \text { product }=\text { جُداء } \\
& \text { product bundle = حُزمُةُ جُداء } \\
& \text { product measure }=\text { قِياسُ جُداء } \\
& \text { product model = نَموذَجُ جُداء } \\
& \text { product order = تَتْتيبُ الجُداء } \\
& \text { product rule = قاعِدةُ الجُداء المُداء } \\
& \text { product topology = طبولو جيا الجُدداء } \\
& \text { product-moment coefficient =مُعامِلُ عَزْم جُداء } \\
& \text { progression = مُتْتَ الِية } \\
& \text { projecting cylinder = أُسطُوانةٌ إسقاطِيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { projecting plane = مُسْتُو إسْقاطِيّ } \\
& \text { projection = مَسْقَط، إسقاط إسِّ } \\
& \text { projection of a vector space }=\text { إسقاطُ فَضاءٍ مُتَّجِهِيّ } \\
& \text { projection on a line }=\text { مَسْقَطٌْ على مُسْتَقيم } \\
& \text { projection on a plane }=\text { مَسْقَطْ على مُسْنَوِ } \\
& \text { projection operator = مُؤَّرُّ إسْقاط } \\
& \text { projective coordinates = إحداثِتَّاتٌ إسْقاطِيَّة } \\
& \text { projective geometry = الهَنْدَسُُ الإسْقاطِيَّة } \\
& \text { projective group = زُمْرة إسْقاطِيَّة } \\
& \text { projective line = مُسْتَقيمٌ إسْقاطِيّ } \\
& \text { projective plane = مُسْتُوٍ إسْقاطِيّ } \\
& \text { projective plane curve = مُنحَن مُسْتُوْ إسْقاطِيّ } \\
& \text { projective point = نُقْطُّةٍ إسْقَطِّةُ } \\
& \text { projective space = فَضاءٌ إسْقاطِيّ } \\
& \text { projective topology = الطبولوجيا الإسْقاطِيَّة } \\
& \text { projective transformation = تَحْويل" إسْقاطِيّ الاطْة } \\
& \text { projector }=\text { مُسْقِط } \\
& \text { prolate cycloid = دُحْروجٌ مُتُطاوِل } \\
& \text { prolate ellipsoid = مُجَسَّمٌ ناقِصِيٌّ مُتُطاوِل } \\
& \text { prolate spheroid = مُجَسَّمٌ كُرُوِيٌّ مُتُطاوِل مُطْ } \\
& \text { prolate trochoid = دُحْروجّ عامٌّ مُتُطاوِل } \\
& \text { proof = بُرْهان، إثْبات }
\end{aligned}
$$

$$
\begin{aligned}
& \text { proof by descent }=\text { بُرْهانٌ نُوربِيّ } \\
& \text { proper class = صَفٌّ فِفْلِيّ } \\
& \text { proper convex function = دالَّةٌ مُحَدَّبَّةٌ فِعْلِيًّا } \\
& \text { proper divisor = قاسِمٌ فِفْلِي"ّ } \\
& \text { proper face = وَجْهُ فِفْلِيَّ } \\
& \text { proper factor = عامِلٌ فِعْلِيّيٌ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { proper fraction = كسْرٌ فِعْلِي" } \\
& \text { proper mapping = تَطْبيق" فِعْلِيّي" } \\
& \text { proper orthogonal transformation =تَحْوِلٌ مُمَعامِلٌ فِفْلِيّ } \\
& \text { proper rational function = دالَّةٌ كَسْرِيَّةٌ فِفْلِّلِّةُ } \\
& \text { proper subfield =حْقْلِ جُزْيُّيٌّ فِعْلِي" }
\end{aligned}
$$

$$
\begin{aligned}
& \text { proper subring = حَلَقةٌ جُزْئَيَّةٌ فِعْلِيَّةَ } \\
& \text { proper subset = مَجْموعةٌ جُزْئِيَّةٌ فِعْلِيَّة } \\
& \text { proper value = قيمةٌ فِعْلِيَّة } \\
& \text { properly divergent series = مُتَسَلْسِلةٌ مُتُباعِدةٌ فِعْلِيًّا } \\
& \text { proportion = تُناسُب } \\
& \text { proportional parts = أجزاءٌ مُتْناسِبة } \\
& \text { proportional quantities = مِقْدارانِ مُتَناسِبان } \\
& \text { proposition }=\text { قَضِيَّة، دَعْوَى } \\
& \text { propositional algebra }=\text { جَبْرُ القَضايا } \\
& \text { propositional calculus =حُسْبُنُ القَضايا } \\
& \text { propositional connectives = رُوابطُ القَضايان القضا } \\
& \text { protractor }=\text { مِنْقَلة } \\
& \text { prove (v) =يُبرْهِنُ } \\
& \text { Prüfer domain = ساحةُ چُروفر } \\
& \text { Prüfer substitution = تَوْيضُ چْروفَرُ } \\
& \text { pseudo inverse = شِبْهُ مَعْكوس } \\
& \text { pseudodistance = شِبْهُ مَسافة } \\
& \text { pseudograph = شِبْهُ بَيان } \\
& \text { pseudolength }=\text { شِبْهُ طول } \\
& \text { pseudometric space = فَضاءٌ ثِبْبُهُ مِترِيّ } \\
& \text { pseudoperfect number = عَدَدٌ ثبْبْهُ كامِل (عَدَدٌ ثِبْهُ تام) } \\
& \text { pseudo-prime number = عَدَدٌ شِبْهُ أوَّكَّي" } \\
& \text { pseudo-Riemannian metric = دالَّةُ مَسافةٍ شِبْهُ ريمانَّة } \\
& \text { pseudosphere = شِبْهُ كُرة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { pseudospherical surface = سَطْحٌ شِبْهُ كُرُويّ } \\
& \text { psifunction = الدَّالةُ بُسايْ } \\
& \text { Ptolemy's theorem =مُرْهْنُةُ بطليموس } \\
& \text { punctured neighborhood =جوارٌ مَتْقوب (جوارٌ مَحْذُوفٌّ) } \\
& \text { pure geometry = الْنْدَسةُ البَحْنة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { pure mathematics = الرِياضِيَّاتُ البَحْتة } \\
& \text { pure projective geometry = الْنُدَسُُ الإِمْقاطِيَّةُ البَحْنَة } \\
& \text { pure surd = عَدَدٌ أصَمَّ بَحْتُ الْحْ } \\
& \text { purely inseparable extension =مُمَلَّدٌ غَيْرُ فَصُولٍ صِرْفًا } \\
& \text { pyramid }=\text { هَرَم } \\
& \text { pyramidal frustum }=\text { جذْعٌ هَرَمِيّ } \\
& \text { pyramidal numbers = أعدادٌ هَرِمِيَّة } \\
& \text { pyramidal surface }=\text { سَطْحٌ هَرَمِيّ هريّ } \\
& \text { Pythagorean identities = مُتطابقاتُ فيثاغورس } \\
& \text { Pythagorean numbers = أعدادٌ فيثاغوريَّة } \\
& \text { Pythagorean theorem = مُبْهَنُةُ فيثاغورس } \\
& \text { ثُثوريَّةٌ فيناغوريَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Q } \\
& \text { quadrangle }=\text { رُباعِيُّ زَوايا } \\
& \text { quadrangular prism = مَوْشورٌ رُباعِيُّ الزَّوايا } \\
& \text { quadrangular pyramid = مَخْروطُرُ رُباعِيُّ الزَّوايا } \\
& \text { quadrant }=\text { رُبع } \\
& \text { quadrantal angle = زاويةُ رُبُع الدَّأِرَرة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { quadratfrei number =عَدِّ خالٍ من التَّرْبيع } \\
& \text { quadratic }=\text { مُعادَلّْة تَبْبِيِيَّة } \\
& \text { quadratic congruence }=\text { تَطابُقُّ تَرْبيعِيّ } \\
& \text { quadratic equation = مُعادَلْةٌ تَرْبيعيَّة } \\
& \text { quadratic form = صيغةٌ تَرْبيعِيَّة } \\
& \text { quadratic formula }=\text { صيغةٌ تَرْبيعيَّة } \\
& \text { quadratic function = دالُّةٌ تَرْبيعِيَّة } \\
& \text { quadratic inequality =مُتباينةٌ تَرْبيعِيَّة } \\
& \text { quadratic polynomial =حُدودِيَّةٌ تَبْبِيعِيَّة } \\
& \text { quadratic programming =بْمَجْةُ تَرْبِيعِّة } \\
& \text { quadratic reciprocity law }=\text { قانونُ التَّعاكُسِ التَّرْيعيعيّ } \\
& \text { quadratic residue }=\text { باق تَرْبيعيّي" } \\
& \text { quadratic surd = أصَمَّهُرْبيعيّي" } \\
& \text { quadratics = التَّبْيِيِّات (جَبْرُ المُعادَلات التُرَبِيعِيَّة) } \\
& \text { quadratrix of Hippias = تَرْبيعيُّ هِيْاس } \\
& \text { quadrature = تَرْبيع } \\
& \text { quadric cone }=\text { مَخْروطّ"تَرْيعيّيّ } \\
& \text { quadric curve }=\text { مُنْحَنِ تَرْيِيعيّ } \\
& \text { quadric quantic = حُدو دِيَّةٌ مُتَجانسةُ تَرْبيعيَّةِ } \\
& \text { quadric surface = سَطْحُ مُتَجانسِّ تَرْبيعِيّ تِّيّْ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { quadrifolium =رُباعِيُ الوُرَيْقات } \\
& \text { quadrilateral =رُباعِيُ أضْاوعاُعات }
\end{aligned}
$$

$$
\begin{aligned}
& \text { quadrinomial distribution =تَوْزيعٌ رُباعِيُّ الحُدود } \\
& \text { quadruple = رُباعِيُّ العَناصِر } \\
& \text { quadruple point }=\text { نُقْطةٌ رُباعِيَّة } \\
& \text { quadruple product of vectors = جُداءٌ رُبَاعِيٌّ لِمُمُّجَهِّات رُباتِ } \\
& \text { quadtree =شَجَرةٌ رُباعِيَّة } \\
& \text { quantal response = استِجابةٌ مُحْكَمة } \\
& \text { quantic = حُدودِيَّةٌ مُتَجانسِة } \\
& \text { quantile }=\text { نُصيَن } \\
& \text { quantity }=\text { كَمِّيّة } \\
& \text { quarter }=\text { رُبع }
\end{aligned}
$$

$$
\begin{aligned}
& \text { quartic curve = مُنحَنٍ من الدَّرَجةِ الرَّابِعةُ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { quartic surd = أصَمُّمُ من المَرْتَبةِ الرَّابِعة } \\
& \text { quartic surface = سَطْحِ من الدَّرَجةِ الرَّبَّبعة } \\
& \text { quartile }=\text { رُيَيْع } \\
& \text { quartile deviation = الانْحِرافُ الرُبُّيْعِيّ } \\
& \text { quasi-perfect number = عَدَدٌ شِبْهُ تامٌ } \\
& \text { quaternary = نظامُ العَدِّ الرُباعِيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { quaternary tree =شَجَرةٌ رُباعِيَّة رُنِّ } \\
& \text { quaternion }=\text { عَدَدٌ فَوْقَ عقَدِيّ (كواترنيون) } \\
& \text { quatrefoil }=\text { رُباعِيُ الوُرَيْقَات } \\
& \text { queens problem = مَنْألةُ المَكِكات } \\
& \text { queuing theory = نَظَرَيَّة الاصْطِفاف (نَظَرَيَّةُ الطَّورابير) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { quintic polynomial = حُدودِيَّةٌ من الدَّرَّجةِ الخامِسِة المامِة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { quintic quantic =حُدو دِيَّةٌ مُتَجانسةٌ خُماسِيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { quotient }=\text { خارِج قِسْمة } \\
& \text { quotient field =حَقْلُ خَوارِج القِسْمة } \\
& \text { quotient group }=\text { زُمْرةُ خَوَارِج القِسْمَ } \\
& \text { quotient ring }=\text { حَلَقُةُ خَورارِج القِقْمْمة } \\
& \text { quotient rule }=\text { قاعِدةُ خارِج القِسْمْ } \\
& \text { quotient set }=\text { مَجْموعةُ خَوارِِج القِسْمَة } \\
& \text { quotient space =فَضاءُ خَوَارِج القِسْمة } \\
& \text { quotient topology }=\text { طبولوجيا خَوارِجِ القِسْمْة }
\end{aligned}
$$

R

$$
\begin{aligned}
& \text { Raabe's convergence test = اختِبارُ رابْ للتَّقارُب } \\
& \text { rabbit sequence }=\text { مُتنتالِيُّ الأرْنَب }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Rademacher functions = دوالٌ رادماخر } \\
& \text { radial distribution function }=\text { دالَّةُ تَوْزيعٍ نصْفِ قُطْرِيّ } \\
& \text { أشكالٌ مُرْتبطةٌ قُطْرًِّّا } \\
& \text { radian }=\text { رادْيان } \\
& \text { radical }=\text { جَذْر } \\
& \text { radical axis = المحْوَرْرُ الأساسِيّ } \\
& \text { radical center = الَرْكَزُ الأساسِيّ الهيّ } \\
& \text { radical equation = مُعادَلةٌ جَذْرِيَّة } \\
& \text { radical fraction =كسْرٌ أساسِيّ } \\
& \text { radical line }={ }^{\prime} \\
& \text { radical plane of two spheres = المُسْتوي الأسَاسِيُ لِكُرتَيْن } \\
& \text { radical sign =عَلامةُ الجَذْر } \\
& \text { radicand }=\text { مَجْذور } \\
& \text { radius }=\text { نصْفُ قُطْر } \\
& \text { radius of convergence }=\text { نصْفُ قُطْر التَّقارُبُ فُّبر }
\end{aligned}
$$

$$
\begin{aligned}
& \text { radius of geodesic curvature }=\text { نصْفُ قُطْرِ التَّقَوُسِ الجِيوديزِيّ } \\
& \text { radius of geodesic torsion }=\text { نصْفُ قُطْر الالْتِفَافِ الجِيوديزيّ } \\
& \text { radius of gyration = نصْفُ قُطْر التَّدْويم } \\
& \text { radius of normal curvature }=\text { نصْفُ قُطْرِ التَّقَوَّسِ النَّاظِمِيّ } \\
& \text { radius of torsion }=\text { نصْفُ قُطْر الالْتِفافِ الِّفي } \\
& \text { radius of total curvature }= \\
& \text { نصْفُ قُطْر التَّقوَّسُ الحُكِّيّ } \\
& \text { radius vector = مُتّجةٌ نصْفُ قُطْرِيّ } \\
& \text { radix }=\text { جَذْر، أساس } \\
& \text { radix complement }=\text { مُتمِّمٌ أصْلِيّيّ } \\
& \text { radix fraction = كَّرٌ أساسِيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { radix notation = تَدْوينٌ بالأساس } \\
& \text { radix point = نُقْطٌة (فاصلة) أصْلِّيَّة } \\
& \text { radix-minus-one complement =مُتمَّمٌّ أصْلِيّ نَاقِصًا واحِدًا } \\
& \text { Radon measure = قِياسُ رادون } \\
& \text { Radon's theorem =مُرْهَهنةُ رادون } \\
& \text { raise to a power (v) =يَفْعُ إلى قُوَّة (يَرْفَعُ إلى أُسّ) } \\
& \text { Ramanujan constant = ثاببتُُ رامانوجان } \\
& \text { Ramanujan's square equation = مُعادَلُُd رامانوجان التَّرْبيعِيَّة } \\
& \text { Ramsey number = عَدَدُ رامْسي }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مُمَرْهَنُةُ رامْسي رامْسي } \\
& \text { Ramsey theory = نَرَيَّةُ رامْسي رامْ } \\
& \text { random digit = رَقْمٌ عَشْوْ } \\
& \text { random error = خَطْاًٌ عَشْوْ } \\
& \text { random experiments =تَجاربُ عَشْوْ إئِّة } \\
& \text { random function }=\text { دالَّةٍ عَشْوْ ائِيَّة } \\
& \text { random matrix }=\text { مَصْفوفةٌ عَشْو ائِيَّة } \\
& \text { random noise = ضَجيجّ عَشْو ائيّي" } \\
& \text { random numbers = أعدادٌ عَشْوْ ائِيَّة } \\
& \text { random ordered sample = عَيِّةُ مُرَّتَّةُ عَشْوْ ائِئَّا } \\
& \text { random partition }=\text { تَجْزئةٌ عَشْوْ ائِيَّة } \\
& \text { random polynomial }=\text { حُدو دِيَّةٌ عَشْوْ ائِيَّة } \\
& \text { random process = إجْر ائيَّةٌ عَشْوْ ائِئّة (عَمَلِيَّةٌ عَثْنُوْ ائِئَّة) } \\
& \text { random sample = عَيِّنةٌ عَنْوْ أئِيَّة } \\
& \text { random sampling = اعتِيانٌ عَشْوْ عِئِيّ } \\
& \text { random start }=\text { بَدْءٌ غَشْوْ ائِيّي } \\
& \text { random variable = مُتَغَيِّرُ عَشْوْ ائيّي" } \\
& \text { مُتَّجِّةٍ عَشْو ائِيّي" } \\
& \text { random walk }=\text { مَسْلَكِ" عَشْو ائيّي" } \\
& \text { كُتُلْ مُعْنَّأة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { randomized test }=\text { اختِبارٌ مُعُشَّشَّ } \\
& \text { range }=\text { مَدِّى } \\
& \text { rank }=\text { رُتبة } \\
& \text { rank correlation = ارتباطُ الرُتُّب } \\
& \text { rank of an observation = رُنبُةُ مُشاهَدة الرُبة } \\
& \text { rank tests = اختِباراتٌ رُتُبَّةَّ } \\
& \text { rank-ordered statistics = إحصاءٌ مُرَّتبُ الُُتُبَ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { rare set = مَجْموعةٌ نادِرة } \\
& \text { rate of change = مُعَدَّلُ التَّعَيُرُ } \\
& \text { ratio }=\text { نسْبة } \\
& \text { ratio estimator }=\text { مُقَدِّرٌ نِسبَبيّ } \\
& \text { ratio of similitude }=\text { نسْبُُ التُّشابُبُهُ } \\
& \text { ratio test = اختِبارُ النّسْبْة } \\
& \text { مُبرَهْنَةُ النّسْبْة } \\
& \text { rational algebraic expression =عبارةٌ جَبْرَيَّةٌ مُنَّطُة } \\
& \text { rational element }=\text { عُنْصُرٌ مُنُطَّقُ } \\
& \text { rational expression =عِبارةٌ مُنَطُقّة } \\
& \text { rational fraction }=\text { كَسْرٌ مُنُطْق } \\
& \text { rational function = دأَلٌٌ مُنَطْقَة } \\
& \text { rational integral function = دالّْةٌ صَحيحةٌ مُنَطّْقة } \\
& \text { rational number = عَدَدٌ مُنَطّْة } \\
& \text { rational operations = عَمَلِيَّاتُ مُنْطُقَّة } \\
& \text { rational root theorem =مُرْهَنُة الجَذْر المُنُطَّقُ } \\
& \text { rationalize (} v \text {) = يُنطّق } \\
& \text { ray center = مَرْكُزُ التُّحاكي } \\
& \text { ray ratio = نسْبُةُ التَّشابُهُ } \\
& \text { Rayleigh distribution = تَوْزيعُ ريلي } \\
& \text { Rayleigh-Ritz method = طَ يقةُ ريلي-ريتْس ريلي } \\
& \text { reachable points = نقاطُ مُدْرَكة (نقاطُ وَصولة) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { reachable set = مَجْموعةٌ مُمْرَكة (مَجْموعةٌ وَصولة) } \\
& \text { real = عَدَدٌ حَقِيقِيّ } \\
& \text { real analysis = التَحْليلُ الحَقيقِي" حِّيّي } \\
& \text { real axis = المِحْورُ الحَقيقِيّ } \\
& \text { real closed field = حَقْلٌ حَقيقِيٌّ مُغْلَقُ } \\
& \text { real closure = كُصاقٌةٌ حَقيقيَّةُ } \\
& \text { real continuum = الُمتُصِلُ الحَقيقِيّ } \\
& \text { real function = دالَّةٌ حَقيقِيَّة } \\
& \text { real line = الُمسْتَقيمُ الحَقيقيّ } \\
& \text { real linear group = زُمْرةٌ خَطِّيّةٌ حَقيقِيَّةِ } \\
& \text { real matrix = مَصْفوفةٌ حَقيقِيَّة } \\
& \text { real number }=\text { عَدَدٌ حَقيقيّيّ } \\
& \text { real number system = مَنظومةُ الأعْدادِ الحَقيقِيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { real polynomial = حُدوردِيَّةٌ حَقيقيَّة المِّة } \\
& \text { زُمُرْة حَقيقِيَّةٌ واحِدِيَّةُ المَقاسِيَّةُ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { real-symmetric matrix = مَصْفوفةٌ حَقيقِيَّةُ مُتنَاظِرة } \\
& \text { real-valued function = دالّْةٌ حَقيقِّةِّة } \\
& \text { reciprocal }=\text { مَقْلوب } \\
& \text { reciprocal differences =فُروقٌ مَقْلوبة } \\
& \text { reciprocal equation = مُعادَلٌْ مَقْلوبة } \\
& \text { reciprocal matrix =مْقْوبُ مَصْفوفة } \\
& \text { reciprocal permutations = تَبْديلانِ مُتْعاكِسان } \\
& \text { reciprocal polar curves = مُنْحِنِيانِ مُتُعاكِسانِ قُطْبِيًّا } \\
& \text { شُكْكْلِنِ مُتعاكِسانِ قُطْبِيَّا } \\
& \text { reciprocal polynomial =حُدو دِيَّةٌ مُعاكِسة }
\end{aligned}
$$

```
            reciprocal ratio = نسبْةٌ مَقْلوبة
            reciprocal series = مُتسسَلْسِلةٌ مققْلوبة (مُتسَلْسِلةُ مُقْلوبات)
            reciprocal spiral = حَلَزونٌ مَقْلوب (حَلَزورنٌ زائِدِيٌّ)
        reciprocal substitution = تَعْويض" مُقْلوب)
```



```
            ~متُّجههاتٌ مُعاكِسة reciprocal vectors =
            reciprocation = تَحْويلٌ مُعاكِس مُساكِ
            reciprocity law = قانونُ التُعاكس
                    rectangle = مُستْطيل
            \mathrm{ rectangle function = دالّْهٌ مُسنتطيلة)}
            rectangle squaring = تربِيعُ
    rectangular coordinates = إحدااثِّهَّاتٌ مُتعامِدة
            rectangular graph = بيانٌ قُضبْانيّ
        rectangular hyperbola = قَطْع زائُدٌ قائم
            rectangular matrix = مُصْفوفةٌ مُسْنُطيلة)
            qractangular number = عَدٌ مُسْنطيل
                    مُتُوازي مُسْنطبلات
            rectangular solid = مُتوازي مُسْتطيلات
            rrectifiable curve = مُنحِنٍ مُنْتهي الطُول)
            rectifying plane = مُسْترٍ مُقوقٌم
            rectilinear (adj) = مُستْتيمُ
            rectilinear generators = مُو=لّداتٌ مُسْتُقيمة)
```



```
            recurrence relation = عَلاقةٌ ارْتدادِّبَّة)
```



```
كrسْرٌ تَسَلْسُلِيٌّ تَكْرارِيّ"
            recurring decimal = عَشْرِيٌ تَكْرارِي"ّ
```



```
            \mathrm{ recursion formula = صيغةٌ (رْتدادِيّة)}
                    recursion relation = عَلاقٌةٌ ارْبدادِّيَّة)
                    \mathrm{ recursive functions = حوالُّارُتِدادِيّة)}
                        reduce (v) = يَخْتْصرِ، يَخْتْزل\
```



```
        \mathrm{ reduced equation = مُعادَلٌةٌ مُخْنَّلة)}
```



```
        reducible (adj) = خَزول (قابِلٌ للاخْتْز ال)
```



```
    تَتحْویلٌ خَزول
```



```
        reduction = اختز
        reduction formula = صيغةٌ اخْنِّال 
    redundant equation = مُعادَلةٌ إطْنُبيّة)
    qredundant number = عَدٌْ وافِر (عَدْدٌ زائِد)
    re-entering angle = زاويةٌ غائِرة悉
```



```
            refinement = مُحَسَّة)
            reflection = انْ_ِكاس
    reflection plane = مُسْتْوي انْعِكاس
    reflection principle of Schwarz = مَبْدًأُ شْفارْتز في الانْعِكاس ا
```

```
            ;reflex angle = زاويةٌ مُنْعُكِسة
    \mathrm{ reflexive Banach space = 'فصاءُ}
            reflexive relation = عَلاقةٌ انْعِكاسِيّة)
                    region = مَنُطِقة
            rregression analysis = تَحْليلُ
    ragression coefficient = مُعامِلُ انْكِفاء
            regression curve = مُنْحَن انْكِفاء
                        regression equation = مُعادَلُّ، انْكِفاء
```



```
            regula falsi = حِسابُ الحَطَأيْن.
```



```
    regular Banach space = فُصاءُ باناخ مُنْتظم%
    /regular Borel measure = قِيسُ بوريل الُمنتظَم
        regular curve = مُنْحَنٍ مُنْتْم
```



```
        regular extension = مُمَدَّدٌ مُنْتْظَم
```



```
        regular graph = بَيانٌ مُنْتضم%
```



```
        regular matrix = مُصْفوفةٌ مُنتظمَمة)
            regular number = عَدَدٌ مُنتضطم
```


$$
\begin{aligned}
& \text { regular polygon = مَضَلَّعٌ مُنْتَظَم } \\
& \text { regular polyhedron =مَتَحِدِّدُ وُجوهٍ مُنْظَم } \\
& \text { regular polytope = مُتَعَدِّدُ وُجوهٍ نونيُّ الأبْعِادِ مُنْتَمَم } \\
& \text { regular prism }=\text { مَوْشور مٌ مُنْتَمَم } \\
& \text { regular pyramid =هَرَمٌ مُنتظَمَم } \\
& \text { regular representation }=\text { تَمْنيلِ مُنْتَمَمْ } \\
& \text { regular ring =حَلَقةٌ مُنْتَظَمة } \\
& \text { regular sequence = مُتتَالِيةٌ مُنْتَظَمة مُنَّ } \\
& \text { regular singular point }=\text { نُقْطةٌ شاذَّ } \\
& \text { regular space }=\text { فَضاءٌ مُنْتَظَمَ } \\
& \text { رُباعِيُ وُجوهٍ مُنْظَمَمْمَمْ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { related angle }=\text { زاويةٌ مَرْجعِيَّة } \\
& \text { relation = عَلاقة } \\
& \text { relative automorphism =َذاكُلِ نِبْبيّ } \\
& \text { relative compactness }=\text { تَراصٌّ نِسْبيّ } \\
& \text { relative complement }=\text { مُتمِّمةٌ نسبَّيَّة } \\
& \text { relative efficiency = فَمَّلِيَّةٌ نسْبِّبَّة نُّ } \\
& \text { relative error }=\text { خَطَّأٌ نسْبِيّ } \\
& \text { relative frequency = تَكْرارٌ نسبْبيّ نِّيْ } \\
& \text { relative frequency distribution = تَوْيعُ تَكْرارٍ نسبْبٍِ } \\
& \text { relative frequency table }=\text { جَدْوَلُ تَكْرارِ نسبْبِيٍ } \\
& \text { relative maximum }=\text { نهايةٌ عُظْمَى نسبْبَّة } \\
& \text { relative minimum }=\text { نهايةٌ صُغرَى نسْبَّة } \\
& \text { relative topology }=\text { طبولوجيا نسْبَّةَ } \\
& \text { relatively closed set }=\text { مَجْمورعةٌ مُغْلَقةٌ نسْبَّا } \\
& \text { relatively compact set }=\text { مَجْموعةٌ مُنَر اصَّةٌ نِّبْبَّاًّا } \\
& \text { relatively open set }=\text { مَجْموعةٌ مَفْتو حةٌ نسْبَّا } \\
& \text { relatively prime }(a d j)=\text { أوَّلََّّانِ نسْبًَّا } \\
& \text { relaxation }=\text { ارتخاء }
\end{aligned}
$$

$$
\begin{aligned}
& \text { طُرَيقةُ الارْتخاء } \\
& \text { reliability }=\text { موْثْوقِيَّة } \\
& \text { remainder }=\text { باق } \\
& \text { remainder formula = } \\
& \text { مُبرْهَنةُ البَواقي } \\
& \text { removable discontinuity =انْقِطاعٌ نَزوعٌ (انْقِطاعٌ قابِلٌ كلإزالة) } \\
& \text { repeated root }=\text { جَذْرْ مُضاعَف (مُتَكَرِّر) } \\
& \text { repeating decimal = عَشْرُيٌّ تَكْرْاريّ } \\
& \text { replicable experiment =تَجْبةٌ قَبلةٌ لِلتَّكْرارِ } \\
& \text { replication }=\text { تَكْرار } \\
& \text { representation }=\text { تَمْنيل } \\
& \text { representation theory }=\text { نَظَرِّةُ التَّمْنيالات } \\
& \text { representative sample =عِيِّةٌ نَمو ذَجَيَّة } \\
& \text { reptile }=\text { زاحِف } \\
& \text { residual set = مَجْموعةٌ باقِية (مَجْموعةٌ راسِبة) } \\
& \text { residual spectrum = طَيْنٌ مُتَبَقِّ } \\
& \text { residual sum of squares }=\text { باقي مَجْمو ع المُرَّبَات } \\
& \text { residual variance }=\text { تَبايُنْ مُتبَقِقٍ } \\
& \text { residue = راسِب، باقِ } \\
& \text { residue class =صَفُّ (رَواسِب) بَواق" } \\
& \text { residue class ring }=\text { حَلَقةُ صُفوف (رَواسِب) بَواقٍ } \\
& \text { residue theorem =مُبْهَنةُ الرَّواسِب ارْبُ } \\
& \text { resolvent = حالَّة } \\
& \text { resolvent kernel = نوَاةٌ حالَّةٌ } \\
& \text { resolvent set = مَجْموعةٌ حالَّة } \\
& \text { response }=\text { استِجحابة } \\
& \text { response variable = مُتَيِّرُ (تابِع) اسْتِجابة } \\
& \text { restricted limit }=\text { نهايةٌ مُقَيَّدة الِّة } \\
& \text { result }=\text { نُيتجة } \\
& \text { resultant = مُحَصِّلة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { reticular density = كَثافةٌ شَبَكِيَّة } \\
& \text { retract = مَجْموعةٌ ضامَّةُ } \\
& \text { Reuleaux polygon =مُضَلّْعُ ريلو } \\
& \text { رُباعيُّ وُجوهِ ريلو } \\
& \text { Reuleaux triangle }=\text { مُثَلَّثُ ريلو } \\
& \text { reverse curve }=\text { مُنْحَنٍ عَكِسِيّ ريّ } \\
& \text { reversion }=\text { عَكْس (إرْجاعُ) } \\
& \text { rhomb }=\text { مُعِيّن } \\
& \text { rhombohedron = مَوْشورٌ مُمُيِّنيّ } \\
& \text { rhomboid = شِبْهُ مُعِيّن } \\
& \text { rhombus }=\text { مُع⿰\zh12\zh1⿻丷夫己 } \\
& \text { ribbon }=\text { شَريط } \\
& \text { Riccati equation = مُعادَلةُ ريكايت } \\
& \text { Riccati-Bessel functions = دَوالُ ريكايت- بِسلِ ريكي }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ricci identities = مُتططابِقاتُ ريتُشي } \\
& \text { Ricci tensor = مُوتِّرُ ريتْشي ريّ } \\
& \text { Ricci theorem =مُبْهَنَةُ ريتْشي ريْشي } \\
& \text { Riemann condition =شَرْطُ ريمان رِّن } \\
& \text { Riemann function = دالَّةُ ريمان } \\
& \text { Riemann hypothesis = فَرْيَّةُ ريمان } \\
& \text { Riemann integral = تَكامُلُ ريمان ريان } \\
& \text { Riemann mapping theorem =مَبرْهَنُة التَّطْبِق لِريمان } \\
& \text { Riemann method = طَيقةُ ريمان كِرئرن } \\
& \text { Riemann space = فَضاءُ ريمان } \\
& \text { Riemann sphere }=\text { كُرةُ ريمان } \\
& \text { Riemann sum = مَجْموعُ ريمان } \\
& \text { Riemann surfaces = سَطوحُ ريمان }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Riemann zeta function = دالُةُ زِيتا لِريعان }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Riemann-Christoffel tensor = مُوتِّرُ ريمان-كْريسْنوفل } \\
& \text { تَقَوُّسٌ ريماليّ } \\
& \text { Riemannian geometry = الْنْدَسةُ الرِيْانيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { تَوْطِئةُ ريمان-لوبيغ } \\
& \text { Riemann-Stieltjes integral = تَكامُلُ ريمان-سْتيلْتْجسس } \\
& \text { Riemann-Stieltjes measure =قِياسُ ريمان-سْنيلتْجس } \\
& \text { مُبرَهْنَةُ ريش- فيشَر } \\
& \text { right angle = الزَّاويةُ القائِمة } \\
& \text { right circular cone }=\text { مَخْروطٌ دائريٌّ قائِم } \\
& \text { right circular cylinder = أُسطُو انةٌ دائرِيَّةٌ قائِمة } \\
& \text { right coset = مَجْموعةٌ مُصاحِبةّ من اليَمينِ } \\
& \text { right helicoid = سَطْحٌ لَوْبَبِّ قُائِم } \\
& \text { right hyperbola = قَطْعٌ زائِدٌ قائِم } \\
& \text { right ideal }=\text { مِنالِيٌّ يَمينيّ } \\
& \text { right identity = مُحايدٌ من اليَمين } \\
& \text { right inverse = مَقْلوبٌ من اليَمين اليّمنين } \\
& \text { right module }=\text { مودولٌ يَمينيّ } \\
& \text { right parallelepiped }=\text { مُتوازي سُطوحٍ قائِم } \\
& \text { right prism = مَوْشورٌ قائِم } \\
& \text { right pyramid =هَرَمٌ قائِم } \\
& \text { right section }=\text { مَقْطَعٌ قائِم } \\
& \text { right spherical triangle }=\text { مُثَّلَّثٌ كُرُوِيٌّ قائِم } \\
& \text { right strophoid }=\text { سْنروفوئيد قائِم } \\
& \text { right triangle = مُثَّلَّثٌ قائِمُ الزَّاوِية } \\
& \text { right truncated prism }=\text { جذْ عُ مَوْشورٍ قائِم }
\end{aligned}
$$

$$
\begin{aligned}
& \text { right-hand limit = نهايةٌ من اليَمين } \\
& \text { right-handed coordinate system = منظومةٌ إحْداثِيَّةٌ يُمينيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { right-handed curve = مُنْحَن يَمينيّ } \\
& \text { right-invertible element = عُْصُرٌ قَلُوبٌ من اليَمين } \\
& \text { ring = حَلَقة } \\
& \text { ring homomorphism = تَشاكُلٌ حَلَقِيّ } \\
& \text { ring isomorphism = تَماكُلٌ حَلَقِيّيّ } \\
& \text { ring of sets = حَلَقُةُ مَجْموعات } \\
& \text { ring operations = عَمَلِيَّا الحَلَقَة } \\
& \text { ring permutation = تَبْديلٌ حَلَقِيّ } \\
& \text { ring theory = نَظَرَيُّة الحَلَقات } \\
& \text { ring torus = طرةٌ حَحَقِيَّة } \\
& \text { ringoid = بْبْهُ حَحَقة } \\
& \text { rise }=\text { الفَرْقُ الرَيْنِيّ } \\
& \text { rising factorial = عامِلِيٌّ صاعِد } \\
& \text { rising factorial polynomials = حُدوريَّاتٌ عامِلِيَّةٌ صاعِدة } \\
& \text { Ritz method = طَريقُُ ريتْس } \\
& \text { Rodrigues formula = صيغةٌ رودْرِيغس رودّ } \\
& \text { Rolle's theorem =مُبْهَنَةُ رول } \\
& \text { Roman numerals = الأرقامُ الرُورمانِيَّة } \\
& \text { rook polynomial = حُدودِيَّةُ الرِّخاخ (حُدور دِيَّةُ القِلاع) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { root }=\text { جَذْرْ } \\
& \text { root extraction }=\text { اسِّخْراجُ جَذْر } \\
& \text { root of a congruence = جَذْرُ مُتُطابِة (حَلُ مُتطُطبقة) } \\
& \text { root of a number = جَذْرُ عَدَد } \\
& \text { root of a polynomial = جَذْرُ حُدودِيَّة } \\
& \text { root of an equation = جَذْرُ مُعادَلة: (حَلُّ مُعادَّلة) } \\
& \text { root of unity = جَذْرُ الوَحْدَد }
\end{aligned}
$$

$$
\begin{aligned}
& \text { root test }=\text { انخِبارُ الجَذْرُ } \\
& \text { root vertex = رَاْسٌ جَذْرِيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { rooted ordered tree = شَجَرةٌ مُرَّبَّةٌ جَذْرِيَّة } \\
& \text { rooted tree }=\text { شَجَرةٌ جَذْرِيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { rose }=\text { ورَدْدة } \\
& \text { rotation = دَوَران } \\
& \text { rotation angle }=\text { زاوِيةُ دَورَرانرَ } \\
& \text { rotation group = زُمْةٌ دَوَرانِيَّة (زُمْرَة دوَرَانات) } \\
& \text { rotation of axes = دوَرانُ المَحاور } \\
& \text { rotational symmetry = تَناظُرٌ دَوَرانِيّ } \\
& \text { Roth's removal rule = قاعِدةُ رُوثْ في الإزالة درُني } \\
& \text { Roth's theorem =مُرْهْتُنُ رُوثْ الزْ } \\
& \text { rotor }=\text { دَوَّار } \\
& \text { Rouché's theorem =مُرْهْنُةُ روشيه } \\
& \text { roulette = دُحْروجة رئة } \\
& \text { round angle = زاويةٌ كامِلة } \\
& \text { round brackets = قَوْسانِ هِلاِليَّان } \\
& \text { round down (v) = يُدَوِرُ نَحْوْ الأدنْىَى } \\
& \text { round off }(v)={ }^{\prime} \\
& \text { round up (v) = يُدَوِّرُ نَحْوْ الأعْلَى } \\
& \text { rounding = تَدْوير } \\
& \text { rounding error =خَطًْأُلَّدْورير } \\
& \text { round-off error = خَطَّأُ التَّدْورير الُّوري } \\
& \text { Routh table }=\text { جَدْوَلُ رُوثْ } \\
& \text { Routh test = اختِبارُ رُوثْ رُّ } \\
& \text { row = سَطْر } \\
& \text { row equivalence = تَكافُؤٌ بِعَمَلِّيَّتِ صُفوف } \\
& \text { row matrix = مَصْفوفةٌ سَطْرٌ } \\
& \text { row space = فَضاءُ سُطور } \\
& \text { row vector = مُتَّجهٌ سَطْرٌ } \\
& \text { Ruffini-Horner method = طَيقُُ روفيني -هورنرنر }
\end{aligned}
$$

$$
\begin{aligned}
& \text { rule }=\text { قاعِدة، مِسْطَرة } \\
& \text { قاعِدةُ الفَصْل }
\end{aligned}
$$

$$
\begin{aligned}
& \text { قاعِدةُ الثَّلاثة (قاعِدةُ الرَّابِع المُتناسِب) } \\
& \text { ruled surface = سَطْحٌ مُسَطُّرُ } \\
& \text { ruler }=\text { مِسْطَرة } \\
& \text { ruling = مُسَطِّر (مُوكِّد) } \\
& \text { run = تُعاقُب، الفَرْقُ السِّينّيّ } \\
& \text { Runge-Kutta method = طَيقُُ رانْج - كوتا } \\
& \text { مُبرْهَنةُ رانْج } \\
& \text { Runge-Walsh theorem =مُرْهَنُةُ رانْج - وولْش رنُ مُ مُ } \\
& \text { Russell's paradox = مُحِيِّةُ راسل رول } \\
& \text { Russian multiplication = عَمَلِيَّةُ الضَّرْب الُُؤُسِيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { S } \\
& \text { saddle }=\text { سْرْ } \\
& \text { saddle point = نُقْطةٌ سَرْجَيَّة } \\
& \text { saddle polygon = مُضَلَّعٌ سَرْجِيَّ } \\
& \text { saddle surface = سَطْحٌ سَرْبِيْ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { sagitta }=\text { سَهْمر } \\
& \text { salient angle }=\text { زاوِيةٌ بارِة } \\
& \text { Salient point on a curve = نُقُةٌ بارِةٌ على مُمْحَنِّ } \\
& \text { salinon = } \\
& \text { sample }=\text { عَيّْنة } \\
& \text { sample correlation coefficient = مُعامِلُ رُمْبَاطِ الِيّنّات } \\
& \text { sample design = تَمْميمُ العِيُّاتنـات } \\
& \text { sample function = دالُّةُ الحِّيْنة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { sample moment = عَزْمُ عَيْنَ } \\
& \text { sample path = مَسِرُ عِيّْنة } \\
& \text { sample size = حَجْمُ عِيَّنة } \\
& \text { sample space = فَضاءُ العيّنِّنُ } \\
& \text { sample survey }=\text { مَسْحُ عِيّنة } \\
& \text { sample variance = تَايُنُ عَيّْنة } \\
& \text { sampling = اعتِيان } \\
& \text { sampling distribution = تَزْزيعُ اعْتُيانيان }
\end{aligned}
$$

$$
\begin{aligned}
& \text { sampling fraction =كَرُ اعْتِيان } \\
& \text { sampling plan = حُطُةُ اعْتَيان } \\
& \text { تِتْنِياتُ اعْمْيَان } \\
& \text { sampling theory = نَظَيَّة الاعْتِيان }
\end{aligned}
$$

$$
\begin{aligned}
& \text { sandwich result = نتيجةُ الشَّطيرة } \\
& \text { Sard's theorem = مُرْهَنُةُ سارد } \\
& \text { satisfy }(v)=\text { يُحَقِّق } \\
& \text { sawtooth wave function = دالَّهُ مَوْجةِ أسْنانِ المِنْشار }
\end{aligned}
$$

$$
\begin{aligned}
& \text { scalar curvature = تَقَوُّسٌ سُلْمِيّ (تَقَوُّسٌ عَدَدِيّي") } \\
& \text { scalar field = حَقْلٌ سُلْمِيَّ (حَقْلٌ عَدَدِيّيّ) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { scalar matrix = مَصْفو فُّةٌ سُلْمِيَّة (مَصْفو فُّةٌ عَدَدِيَّة) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { scalar projection = مَسْقَطُ سُلَّمِيّ (مَسْقَطْ عَدَدِيّ) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { scalar-valued (adj) = سُلّْمِيُ القيمة (عَدَدِيٌُ القيمة) } \\
& \text { scale = تَدْريج، مِقْيُس }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مُنُلَّثُ كُرُوِيٌّ مُخْتَلِفُ الأضْلا ع }
\end{aligned}
$$

$$
\begin{aligned}
& \text { scatter diagram = مُخَطَّطُ النَبَعْثُر عُمُرْ } \\
& \text { scattergram = مُخَطَّطُ التَبَّعْثُ } \\
& \text { Schauder basis problem = مَسْألةُ قاعِدةِ شاوْْدرَ } \\
& \text { Schläfli integral =كَكُملُ شْلافلي } \\
& \text { Schnirelmann density }=\text { كَثافةُ شُنْيرلْمَنُ } \\
& \text { Schottky's constant = ثابتةُ شوتُكي } \\
& \text { Schottky's theorem =مُرَهْنُةُ شْونْيُني }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Schröder's equation = مُعادَلُّهُ شْرويدَر } \\
& \text { Schröedinger equation = مُعادَلُةُ شْرودينْغَر } \\
& \text { Schruttka theorem =مُرَهْهَنُة شْروتْنَا }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Schur complement = مُتمِّمةُ شور } \\
& \text { Schur decomposition =تْرْقُ شور } \\
& \text { Schur-Cohn test = اختِبارُ شورْ-كون } \\
& \text { Schur's inequalities = مُتبايناتُ شور } \\
& \text { Schur's lemma = تَوْطِئةُ شور } \\
& \text { Schur's theorem =مبرْهْنُةُ شور } \\
& \text { Schwartzian derivative }=\text { مُشْتُقٌ شْو ارتْزِيّ } \\
& \text { Schwarz inequality = مُتباينةُ شْفارْنز } \\
& \text { Schwarz lemma = تَوْطِئُة شْفْارْنز } \\
& \text { scientific notation = تَدْوِينٌ عِلْمِيّ } \\
& \text { score = عِشْرون } \\
& \text { secant }=\text { قاطِع } \\
& \text { مُنْحَني القاطِع } \\
& \text { secant line = مُسْتَقيمٌ قاطِع } \\
& \text { secant method = طَ يقةُ القاطِعُ } \\
& \text { second }=\text { ثانية } \\
& \text { second curvature = التَّقَوُسُ الثَّاَين } \\
& \text { second derivative = الُمثنْتُقُ الثّانين } \\
& \text { second diagonal }=\text { قُطْرْ ثانٍ } \\
& \text { second mean-value theorem = المُبْهَنَةُ الثَّانيةُ للقيمةِ الوُسْطَى } \\
& \text { second of angle = ثانيةٌ قَوْنِيَّة } \\
& \text { second of time = ثانِيةٌ زَمَنَّيَّ } \\
& \text { second quadrant }=\text { الرُّبُعُ الَّثانين } \\
& \text { second species = النَّوْعُ الثَّانين } \\
& \text { secondary diagonal = قُطْرٌ ثانوَيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { second-category set = مَجْموعةٌ مَنَ الفِئِةِ الثَّانية } \\
& \text { second-kind induction = اسنِقْراءٌ من النَّوْع الثُّانين } \\
& \text { second-order differences = فُروقٌ من المُرْتَبِّة الثُّانِية } \\
& \text { second-order equation = مُعادَلّْة من المَرْتَبَبة الثُّانية }
\end{aligned}
$$

$$
\begin{aligned}
& \text { section }=\text { مَقْطَع } \\
& \text { section formula }=\text { صيغةُ المَقْعَعُعُ } \\
& \text { section of a function = مَقْطَعُ دالًّة } \\
& \text { section of a set = مَقْطَعُ مَجْموعة } \\
& \text { sector }=\text { قِطاع } \\
& \text { sectoral harmonic }=\text { تَو افُقَيِّةٌ قِطاعِيَّة } \\
& \text { sectorgram = مُخَطُّطٌ دائرِيّ } \\
& \text { secular determinant }=\text { الُمحَحِّدةُ المُميِّزة [لِمَصْفوفة] } \\
& \text { seed }=\text { بذرة } \\
& \text { segment }=\text { قِطْة } \\
& \text { Seidel method = طَيقةُ سايْدل } \\
& \text { selection bias = انْحِيازُ اخِنيار }
\end{aligned}
$$

$$
\begin{aligned}
& \text { self-complementary graph =بَيانٌ مُتَمِّمٌ لِذاتِهِ } \\
& \text { تَبْجْ ئةٌ مُترَ افِقةٌ ذاتِيَّا }
\end{aligned}
$$

$$
\begin{aligned}
& \text { self-inverse element = عُنصرٌ مُساو لِمَعْكوسِهِ } \\
& \text { self-polar triangle }=\text { مُتَلَّثٌ قُطْبِّ ذاتِيَّا } \\
& \text { self-similarity = تَشابُبٌة ذاتِيّ } \\
& \text { semiaxis = نصْنُ مِحْوَرَ } \\
& \text { semicircle = نصْفُ دائِرة } \\
& \text { semicircumference = نصْفُ مُحيطِ دائِرة نصُ } \\
& \text { semicontinuous function = دالْةٌ نصْفُ مُسْتَمِرَّة } \\
& \text { semicubical parabola = قَطٌْ مُكافِئُ نِصْفُ نَكْعِيبيّ نِّ } \\
& \text { semi-group = نصْفُ زُمْرة } \\
& \text { semi-group theory = نَظَريَّةُ أنْصاف الزُمُرَ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { أنْصافُ لامْتُغَيِّرات (مُراكِمات) } \\
& \text { semi-inverse }=\text { نصْفُ مَعْكوس }
\end{aligned}
$$

```
        semilinear mapping = تَطْبيقٌ نصْفُ خَطّي"
```



```
        semimajor axis = نصْتُ
        semimetric = نصْفُ دالًّهِهِسافة (نصْفُ مِترّ)
```



```
        seminorm = نصْفُ نظظم
        semiperfect number = عَدُّ نصْفُ
        semiperimeter = نصْفُ مُحيط
```



```
    semi-regular solid = مُجَسَّمٌ نصصْفُ مُنْتُمَم
        semiring of sets = نصْفُ حَحَقةٍ من المَجْموعات
        semisecant = نصْنُ قاطِع 
```



```
        semisimple module = مودولٌ نصْنُ بَسيط
semi-transcendental function = دالّْة نصْفُ مُتسامِية)
    semitransverse axis = نص⿱丷天, مِحْور)
    semitransverse axis = نص⿱宀㠯ُ)
    sentential calculus = حُسبْانُ الجُمَل (حُسْبُانُ القَضايا)
    sentential connectives = رُوابطُ
    separable (adj) = فَصول (قابِلٌ للفَصْ)
```



```
    عُنُصرُر" فَصول (عُنصُرٌ قابِل" للفَصْ)
```



```
    separable space = فَضَاءٌ فَصول (فَضًاءٌ قابِلٌ للفَصْل)
    separate points (v) = يُفْصِلُ
```

$$
\begin{aligned}
& \text { separate variables (v) = يَفْصِلُ مُتَغَيِّرات } \\
& \text { separated sets = مَجْموعَتانِ مُنْفَصِلَتانـان } \\
& \text { separation axioms = مَوْضوعاتُ الفَصْل } \\
& \text { separation of a set =فَصْلُ مَجْموعة (قَطْعُ مَجْموعة) } \\
& \text { separation of the first kind = فَصْلٌ من النَّوْع الأوَّلّ } \\
& \text { separation of the second kind = فَصْلٌ من النَّوْعُ الثَّاني } \\
& \text { separation of variables = فَصْلُ المُنَفِّرًات ات } \\
& \text { مُبرْهَنُةُ مازور في الفَصْلُ } \\
& \text { septilateral (adj) =سُباعيُ الأضْلا ع } \\
& \text { septinary number = عَدَدٌ سُباعِيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { sequence = مُتتالِية } \\
& \text { sequence of functions = مُتَتالِيُة دَوالَّ } \\
& \text { sequence of numbers = مُتتالِيُّ أعْداد } \\
& \text { sequence of points = مُتتالِيةُ نقاط } \\
& \text { sequence of sets = مُتَتالِيةُ مَجْمْوعات } \\
& \text { sequence space = فَضاءُ مُتْتالِيلات } \\
& \text { sequential analysis = الُّتحْليلُ التَّابُعبِيّ } \\
& \text { requential convergence = تَارُبٌ مُتتالِيلَّاتِيّ } \\
& \text { sequential trials = تَجاربُ تَتابُعِيَّة } \\
& \text { sequentially compact set = مَجْموعةٌ مُترَ اصَّةُ مُتَتالِيَّاِتَّا }
\end{aligned}
$$

$$
\begin{aligned}
& \text { serial correlation = ارتباطُ تَسَلْسُلِيّيّ } \\
& \text { serial order = تَرْتيبٌ تَسَلْسُلِيّيّ } \\
& \text { serial sampling }=\text { اعتِيانٌ تُسَلْسُلِّيِّ } \\
& \text { serially ordered set = مَجْموعةٌ مُرَتَّبٌة تَسَلْسُلِيًّا (خَطِيًّّا) } \\
& \text { series = مُتَسَلْسلة } \\
& \text { serpentine curve = مُنْحَني الأُفُعْوُونِ } \\
& \text { Serret-Frenet formulas = صِيَغُ سيريه-فْرينيه } \\
& \text { sesquilinear form = صيغةٌ خَطِّنّةٌ مَرَّةُ وَنصْفَ الَرَّةُ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { set = مَجْموعة } \\
& \text { set difference = فَرْقُ مَجْمو عَتَيْن } \\
& \text { set direct product = الجُداءُ المُباشِرُ لِمَجْموعَيَيَّن } \\
& \text { set function = دالَّةٌ مَجْمْوعاتِيَّة } \\
& \text { set of first category = مَجْموعةٌ من الفِئِة الأُوَلَى } \\
& \text { set of Jordan content } 0=\text { مَجْموعةُ جورْدان الصِّفْرِيَّة } \\
& \text { set of ordered pairs = مَجْموعةٌ من الأزْواج الُمُرَّبَّبُة } \\
& \text { set of second category = مَجْموعةٌ من الفِئِةِ الثُّانِية } \\
& \text { set of uniqueness = مَجْموعةٌ فَرْدانيَّة } \\
& \text { set partition = تَجْزِئُةُ مَجْموعة } \\
& \text { set theory = نَظَرِيَةُ المَجْمْوعات }
\end{aligned}
$$

$$
\begin{aligned}
& \text { set-valued function = دالَّةُ مُتَعَدِّدةُ التِيَمْ } \\
& \text { مُبرْهَنَةُ الدَّوَائِرِ السَّنُعْ } \\
& \text { sexadecimal (adj) = سِتَّ عَشْرِيّ } \\
& \text { sexagesimal measure of angles = القِياسُ السِّنُونِيُّ لِلزَّوايا } \\
& \text { sextant }=\text { سُدْنِيّ } \\
& \text { sextic equation = مُعادَلٌٌْ سُداسِيَّة } \\
& \text { sextile }=\text { سُدَيْسِيّ } \\
& \text { sextillion = سِكْسْتليون } \\
& \text { sfield = حَقْلٌ مُتَخالِف } \\
& \text { Shannon's theorems =مُرْهَناتُ شانون } \\
& \text { sheaf }=\text { حُزْمة (طبو جَبْرَيَّة) } \\
& \text { sheaf of planes = حُزْمةُ مُسْتوياترِّهُ } \\
& \text { shear }={ }^{\text {قَ }} \\
& \text { sheet = صَفْحة } \\
& \text { طُرَيقةُ القِشْرة } \\
& \text { Sheppard's corrections = تَصْحيحات شيبارد } \\
& \text { shift }=\text { انْزِياح } \\
& \text { مُبَرْهَنةُ الإزاحة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { سِكِينُ الحَذَّاء } \\
& \text { short arc = الْقَوْسُ الصَّغير } \\
& \text { short division = قِسْمةٌ صَغيرة } \\
& \text { short radius }= \\
& \text { shrinking }=\text { انْكِماش } \\
& \text { shrinking of the plane }=\text { انْكِماشُ المُسْتَوي } \\
& \text { shrinking space }=\text { فَضاءُ انْكِماش انمُري } \\
& \text { shrinking transformation =تَحْويلُ انْكِماش } \\
& \text { vide = ضِلْع، وَجْه }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Sierpinski curve }=\text { مُنْحَني سيرْنْسْكْي } \\
& \text { Sierpinski gasket = غِرْبالُ سيرْنِنْنْكي } \\
& \text { Sierpinski set = مَجْموعةُ سيرْنْنْسْكي } \\
& \text { Sierpinski sieve =غْبالُ سيرِّنْسْكْي } \\
& \text { sieve of Eratosthenes =غْبْبالُ إير اتوسْنين } \\
& \text { rigma algebra }=\text { جَبرُ سيغْما } \\
& \text { sigma field }=\text { حَقْلُ سيغْما } \\
& \text { sigma function = دَالَّةُ سيغْما } \\
& \text { sigma-ring }=\text { حَلَقةُ } \\
& \text { مُنْحَني سيغْموئيد } \\
& \text { sigmoid function = دالَّةُ سيغْموئيد } \\
& \text { sign }=\text { علامة (إشارة) } \\
& \text { sign of aggregation = عَلامةُ تَجَمُّع (عَلامةُ حَصْر) } \\
& \text { signed measure = قِياسٌ مُؤَشَّر } \\
& \text { signed number = عَدَدٌ مُؤَشَّرُّ } \\
& \text { significant digits }=\text { أرقامٌ مَعْنُوَّةً } \\
& \text { أرقامٌ مَعْنويَّة } \\
& \text { signless Stirling number =عَدَدُ سْتيرْلْنْغ بِلا إشَارة } \\
& \text { signum function = دالّةُ الإشارة } \\
& \text { silver ratio = النِّسْبُةُ الفِضِيّة }
\end{aligned}
$$

```
    similar (adj) = مُتشابه
similar decimal fractions=
            similar ellipses = قَطْعانٍ ناقِصانِ مُتشابِهان
            similar ellipsoids=~
            similar fractions = كسْرانِ مُتَشابهان
            \mathrm{ vimilar hyperbolas = قُعانِ زائِدانِ مُتشابهان})
```



```
            similar matrices = مُصْفو فَنانِ مُتُشابهُتان)
```



```
            similar surfaces = سُطْحانِ مُتَشابْهان 
            ~rmilar terms=
            similar triangles = مُثلّثّانٍ مُتَشابِهان
            similarity = تَشابُهه
            similarity point = نُقْطةُ
```



```
        similitude = مُشابَهة"
            similitude center = مرْكزٌُ الُمشابَهه
            similitude circle = دائرةُ المُشابهُة
            similitude ratio = نسْبة)
simple aggregation index = فِهْرِس تَجْمیعی بَسيط 
            \mathrm{ roبرٌ بَسيط }
            cimple alternative = بَديل` بَسيط 
simple analytic function = دالَّةٌ تَحْليلِي\tilde{x}
```



```
    simple closed chain = سِلْسلةٌ مُغْلَةٌ بَسيطة"
    simple closed curve = مُنْحَنٍ مُغْلَقِّ بَسيط 
    simple compression = انْضِغاطٌ بَسيط 
```

$$
\begin{aligned}
& \text { simple continued fraction =كسْرٌ تَسَلْسُلِيٌّ بَسيط } \\
& \text { مُنْحَنٍ بَسيط } \\
& \text { simple cusp }=\text { قُرْنةٌ بَسيطة } \\
& \text { simple dipath = مَسارٌ مُوَجَّهُ بَسيط } \\
& \text { simple elongation = استِطالةٌ بَسيطة } \\
& \text { simple event =حَدَثٌ بَسيط (حَدَثٌ اْبْتِدائِيّ) } \\
& \text { simple extension =تَمْديدٌ بَسيط } \\
& \text { simple field extension =تْمْيلٌ بَسيطٌ لِحَقْل } \\
& \text { simple fraction = كَسْرٌ بَسيط }
\end{aligned}
$$

$$
\begin{aligned}
& \text { simple graph =بَيانٌ بَسيط } \\
& \text { simple group =زُمْرةٌ بَسيطة } \\
& \text { تَقْريبٌ تَوَأُقِيٌّ بَسيط }
\end{aligned}
$$

$$
\begin{aligned}
& \text { simple hypothesis =فَْنِيَّةٌ بَسيطة } \\
& \text { simple integral = تَكامُلِّ بَسيط بُّ } \\
& \text { simple interest = فائِدةٌ بَسيطة } \\
& \text { simple order = تَرْتيبٌ بَسيط } \\
& \text { simple point }=\text { نُقْطةٌ بَسيطة } \\
& \text { simple polygon = مُضَلَّعٌُ بَسيط بُسِّ } \\
& \text { simple polyhedron = مُتَحِدِّد وُجوهٍ بَسيط } \\
& \text { simple results }=\text { نَائِجُ بَسيطة } \\
& \text { simple root }=\text { جَذْرْ بُسيط بُسِّ } \\
& \text { simple shear = قَصٌّ بَسيط } \\
& \text { simple singular point }=\text { نُقْطةٌ شاذَةٌ بَسيطة } \\
& \text { simplex }=\text { مُبَسَّط } \\
& \text { طُرَيقةُ المُبَسَّطات } \\
& \text { simplicial complex }=\text { مَجَمَّعُعُ مُبَسَّطات } \\
& \text { simplicial graph }=\text { بَيانٌ مُبَسَّطِيّ مبِّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { simplicial mapping =تُطْيقٌ مُبَسَّطِي" } \\
& \text { مُحجمَّعُ مُبَسَّطاتٍ جُزبْئيّي }
\end{aligned}
$$

$$
\begin{aligned}
& \text { simplicial triangulation =تْثْيثٌ مُبَسَّطِي" } \\
& \text { simplification }=\text { تَبْسيط } \\
& \text { simply connected region = مَنْقِةٌ بَسيطةُ التَّرُبُط } \\
& \text { simply connected space =فَضاءٌ بَسيطُ التُّر ابُط } \\
& \text { simply ordered set = مَجْموعةٌ بَسيطةُ التَّرْتيب } \\
& \text { simply periodic function = دالْةٌ بَسيطةُ الدَّوْرُيَّة } \\
& \text { Simpson's formulas = صَيُغ سِمْسونون }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Simson line = مُسْتَقيُمُ سِمْسون } \\
& \text { simulation }=\text { مُحاكاة } \\
& \text { simultaneous equations = مُعادَلاتٌ آنيّة } \\
& \text { simultaneous inequalities =مُتراجِحاتٌ آنِيَّة } \\
& \text { sine }=\text { جَيْب } \\
& \text { مُمْحَني الجُيْبِ } \\
& \text { sine laws = قانونا الجُيوب } \\
& \text { sine rules = قاعِدَتا الجُيوب } \\
& \text { sine series = مُتسَلْسلةُ الجَيْبَ } \\
& \text { sines law }=\text { قانونُ الجُيوب } \\
& \text { sine-tangent theorem =مُبرْهَنُةُ الجَيْب والظُّلّ } \\
& \text { singleton = مَجْموعةٌ أُحادِيَّة } \\
& \text { single-valued function = دالَّةٌ أُحادِيَّةُ القيمة } \\
& \text { singly even number = عَدَدٌ مُفْرُدُ الزَّوْْجيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مُنْحَنٍ شاذٌ على سَطْحَ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مَصْفو فةٌ شاذَّة } \\
& \text { singular measure = قِياسٌ شاذّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { جُزْءٌ شاذّ } \\
& \text { singular point }=\text { نُقْطُةٌ شاذَّة } \\
& \text { singular solution = حَلٌ شاذّ } \\
& \text { singular transformation = تَحْويلٌ شاذّ } \\
& \text { قيمةٌ شاذَّة } \\
& \text { تَفْريقُ القِيَمَ الشَّاذَّةُ } \\
& \text { singularity =شُذوذ } \\
& \text { sinistrorse curve = مْنحَنٍ يَسارِيّ } \\
& \text { مُنْحَنِ يَسارِيّ } \\
& \text { sink }=\text { مَصَبْ } \\
& \text { sinusoid }=\text { مُنْحَني الجَيْبِ } \\
& \text { sinusoidal (adj) }=\text { جَيْبي" } \\
& \text { sinusoidal function = دالْةٌ جَيبيبَّة } \\
& \text { sinusoidal spiral = لَوْبَبٌ جَيْبِي" } \\
& \text { six circles theorem =مُبْهَنةُ الدَّوائِرِ السِّتّ } \\
& \text { six exponentials theorem = مُبْهَنَةُ الأُسُس السِّنَّةُ } \\
& \text { size }=\text { حَجْم } \\
& \text { skeleton }=\text { هِيْكَل } \\
& \text { مُنْحَنِ مُتَخالِف } \\
& \text { skew field = حَقْلٌ مُتَخالِف } \\
& \text { skew Hermitian form = صيغةٌ هِرْمتيَّةٌ مُتَخالِفة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { skew lines = مُسْتَقيمانِ مُتَخْالِفان } \\
& \text { skew matrix = مُصْفوفةٌ مُتخَالِفة } \\
& \text { skew polygon = مُضَلَّعٌ تَخالُفِيّ } \\
& \text { skew product = جُداءٌ مُتَخالِفِ مِّف } \\
& \text { رُباعيُّ أضْلاعٍ مُتَخالِف } \\
& \text { skew surface = سَطْحٌ مُتخالِف مُحْ } \\
& \text { skewed density function = دالُْةُ كَثافةٍ مُتَخالِفة } \\
& \text { skewes number = عَدَدُ التَّخالُفات كُ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { skewness }=\text { الْتِواء } \\
& \text { مُحَدِّدةٌ مُتناظِرةٌ مُتَخالِفة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { skew-symmetric tensor =مُوتِّرٌ مُتَناظِرٌ مُتَخالِفِ } \\
& \text { slack variable }=\text { مُتَغِيِّرٌ راكِد } \\
& \text { ارتِفاعٌ مائِل } \\
& \text { slide rule = مِنْطَةٌ حاسِبة } \\
& \text { slope }=\text { مَيْل } \\
& \text { slope angle }=\text { زاويةُ المَيْل } \\
& \text { slope function = دالَّةُ المَيْل } \\
& \text { slope of a curve at a point = مَيْلُ مُنْحَنٍ في نُقْةٍ منه } \\
& \text { slope of a line = مَيْلُ مُسْتَقيم } \\
& \text { slowly decreasing function = دالَّةٌ مُتناقِصةٌ بُبُطْء } \\
& \text { مُتَتالِيةٌ مُتَناقِصةٌ بُبُطْء } \\
& \text { دالَّلّةٌ مُتْزَ ايدةٌ بِبُطْء }
\end{aligned}
$$

$$
\begin{aligned}
& \text { دائرةٌ صَغيرة } \\
& \text { small world problem =مَسْألةُ العالَمِ الصَّغير } \\
& \text { Smarandache function = دالَّةُ سْمارَنْداشي } \\
& \text { Smith number }=\text { عَدَدُ سْميث } \\
& \text { smooth (v) = يُمَلِّس، يَصْقُل } \\
& \text { smooth curve = مُنحَن أمْلَس } \\
& \text { smooth function = دالَّةٌ مَلْسِاء أْ } \\
& \text { smooth manifold = مُتَنَوِّةٌ مَلْسِاء مَ } \\
& \text { smooth map = تَطْبيقٌ أمْلَس } \\
& \text { smooth surface = سَطْحِ أمْلَس } \\
& \text { smoothed data }=\text { مُعْطَياتٌ مُمَمَّسة امُّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { smoothing a function = تَمْليسُ دالَّة } \\
& \text { solenoid group = زُمْةٌ وَشيعِيَّة } \\
& \text { solid angle = زاوِيةٌ مُجَسَّمة } \\
& \text { solid figure }=\text { شَكْلٌ مُجَسَّمُ مُمْ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { solid of revolution = مُجَسَّمٌ دَوَرانِيّ } \\
& \text { كُرُّ مُصْمَتة } \\
& \text { solidus = خَطُّ كَسْرْ مائِل } \\
& \text { soliton = حَلّْ وَححيدُ الرُّتابة } \\
& \text { soluble (adj) = حَلُول (قابلٍ لِلحَلّلّ } \\
& \text { زُمُرْةٌ حَلولة } \\
& \text { solution }=\text { حَلّ } \\
& \text { solution by inspection =حَلٌ بِالَّجَجْرِب } \\
& \text { solution by radicals =حَّلَّ بالجُذور } \\
& \text { solution of a triangle =حَلُّ مُثَّثْ } \\
& \text { solution set = مَجْموعةُ حَلِّ } \\
& \text { solvable (adj) = حَلُول (قابلٌ لِلْحَلّ) } \\
& \text { solvable extension =مُمَدَّدٌ حَلول } \\
& \text { solvable group = زُمْرُّ حَلولة } \\
& \text { solve (v) = يَحُلّ } \\
& \text { solvmanifold = مُتَنَوِّةٌ حَلولة } \\
& \text { صيغةُ زومرفِلْد } \\
& \text { source }=\text { مَنْبَع } \\
& \text { Souslin set = مَجْموعةُ سوسْلين } \\
& \text { Souslin's conjecture = مُخَمَّنُةُ سوسْلِنُ } \\
& \text { Souslin's line =مُسْتَقيمُ سوسْلين سولين } \\
& \text { Souslin's theorem = مُبَهْنَهُ سوسْلين سولن } \\
& \text { space }=\text { فَضاء } \\
& \text { space coordinates = إحدآثِّيَّتٌ فَضائِيَّة } \\
& \text { space curve = مُنْحَ فَضائِي" }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مُنْحَنٍ مالِكُّ لِلْفَضاء } \\
& \text { span }=\text { بَسْطة } \\
& \text { spanning subgraph = بَيانٌ جُزْبْيٌّ باسِط } \\
& \text { spanning tree =شَجَرَة باسِطة (شَجَرَةٌ أُعْمَيّْة) } \\
& \text { sparse matrix = مُصْفوفة غْيرُ كثيفة } \\
& \text { Spearman-Brown formula = صيغةُ سْبِيرمان- بْراون } \\
& \text { special functions = دَوالُّ خاصَّة } \\
& \text { special induction = استِقْراءٌ خاصّ } \\
& \text { special integral = تَكامُلٌ خاصّ } \\
& \text { special Jordan algebra = جَبْرُ جورْدان الخاصرّ } \\
& \text { تَحْوِيلٌ مُتُعامِدٌ خاصّ } \\
& \text { special unitary transformation = تَحْويلّ واحِدِيٌّ خاصرّ } \\
& \text { spectral decomposition }=\text { تَفْيق" طَيْفيّ } \\
& \text { كَثافةٌ طَيْفِيَّة } \\
& \text { spectral factorization = تَحْليلٌ طَيْفِيٌّ إلى عَوامِل كِيْ } \\
& \text { spectral form = صيغةٌ طَيْفِيَّة } \\
& \text { spectral function = دالَّةٌ طَمْفَيَّة } \\
& \text { spectrum }=\text { طَّف } \\
& \text { مُبرْهَنَةُ النَّسْريع } \\
& \text { Sperner set = مَجْموعةُ سْبيرنَرْرُ } \\
& \text { Sperner's theorem }=\text { مُبَهْهَنُُ سْبِيرنَرُرْ } \\
& \text { sphere }=\text { كُرة } \\
& \text { sphere-packing problem =مَسْألةُ رَزْمِ الكُرات } \\
& \text { spherical (adj) = كُرويّ } \\
& \text { spherical angle }=\text { زاويةٌ كُرُوَيَّة } \\
& \text { دوَوالُ بِسِلَ الْكُرُوَيَّةُ كِرْةُ } \\
& \text { spherical cap = قُبُعٌٌ كُرَوِيَّة } \\
& \text { spherical cone =مَخْروطٌ كُرُويّ } \\
& \text { spherical coordinates }=\text { إحداثِيَّاتٌ كُرُوَيَّةُ كِرْيُ } \\
& \text { مُمْحَنٍ كُرُوِيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { spherical cyclic curve = مُنْحَن دَوْريٌٌ كُرُويّ } \\
& \text { دَرَجةٌ كُرَوِيَّة } \\
& \text { spherical distance = مُسافٌّة كُرُوَيَّة } \\
& \text { زيادةٌ كُرُوَيَّة } \\
& \text { spherical geometry = الْنْدَسُةُ الكُرُويَّة } \\
& \text { spherical harmonics }=\text { تو افُقِقَّاتٌ كُرْ كُرَيَّة } \\
& \text { spherical image }=\text { صورةٌ كُرْوَيَّة } \\
& \text { spherical indicatrix = دَليلٌ كُرُويّ } \\
& \text { spherical lune = هِلالٌ كُرَوِيّ } \\
& \text { مُمْ⿰亻⿱㇒⿻⿱一⿱日一丨殳ُع كُرُوِيّ } \\
& \text { spherical pyramid = هَرَمٌ كُرْوِيّ كِّيٌ } \\
& \text { spherical radius }=\text { نصْنُ قُطْرِ كُرَوِيّ } \\
& \text { spherical representation }=\text { تَمْنيلٌ كُرُويّ كُريّ } \\
& \text { قِطط } \\
& \text { spherical segment }=\text { قِطْةٌ كُرُوِيَّة } \\
& \text { spherical spiral = حَلَزونٌ كُرُوِيّ } \\
& \text { spherical surface = سَطْحٌ كُرُوِيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { spherical triangle = مُتَلْثٌ كُرُوِيّ كُريّ } \\
& \text { spherical trigonometry = عِلْمُ المُثْثَاتُ الكُرُوِيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { spherics = الُنْدَسَةُ الكُرَوِيَّةُ } \\
& \text { spheroid =مُجَسَّمٌ كُرْوانيّ } \\
& \text { زيادةٌ كُرُوانيَّة } \\
& \text { تو تُوفَيَّاتٌ كُرُوانيَّة } \\
& \text { spheroidal triangle = مُثُلَّثٌ كُرُورانيّ كِّيّ } \\
& \text { spherometer = مِقْياسُ النَّكَورُر } \\
& \text { spinode }=\text { قُرْنة } \\
& \text { spinor }=\text { مُدَوِّرِّم } \\
& \text { spiral }=\text { حَلَزون }
\end{aligned}
$$

$$
\begin{aligned}
& \text { spiral of Archimedes = حَلَزونُ أرْخَميدِس } \\
& \text { spline }=\text { قِدَّة } \\
& \text { split exact sequence = مُتَالِيةٌ مُنْشَطْرْةٌ تامَّة } \\
& \text { splitting field = حَقْلُ تَفْريق } \\
& \text { sporadic simple group = زُمرةٌ بُسيطةٌ مُشُشَّتَّة } \\
& \text { spread = مَدَى الانْتِشار } \\
& \text { square = مُرَّعَع } \\
& \text { square bracket = مَعْقو فان (حاصِرةٌ مُرْبَّع) } \\
& \text { دَرَجةٌ مُرَبَّعة } \\
& \text { square grade = غْراد مُربَّعَع } \\
& \text { مَصْفْوفةٌ مُرَّعَة } \\
& \text { square number = عَدَدٌ مُرَّبَع } \\
& \text { square root = جَذْرٌ تَرْبيعيّيٌ } \\
& \text { عَدَدٌ خالٍ من التَّرْيِع } \\
& \text { عَدَدٌ خالٍ من التَّرْيع }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مُبرْهَنْةُ الجَذْرِ التَّبَبيعِيّ } \\
& \text { square-root transformation = تَحْويلُ الجَذْرِ التَّرْبِيعيّ } \\
& \text { square-summable (adj) =جَموعِ تَبْيعِيَّا } \\
& \text { squaring the circle }=\text { تَرْيعُ الدَّأِرَة } \\
& \text { قاعِدةُ الحَصرْ } \\
& \text { مُبَرْهَنُةُ أطوْ لِ أخلاع المُثُنَّث } \\
& \text { stable (adj) = مُسْنَقِرّ } \\
& \text { stable graph = بَيانٌ مُسْتَقِرّ } \\
& \text { stable polynomial =حُدو دِيَّةٌ مُسْتَقِّةَّةٍ } \\
& \text { standard basis = قاعِدةٌ مِعْيارِيَّة } \\
& \text { standard deviation }=\text { انْحِر افٌ مِعْيارِيّ } \\
& \text { standard form of an equation = صيغةٌ مِعْيارِيَّةٌ لِمُعادَلَّة } \\
& \text { standard measure = قِياس" مِعْيارِيّ }
\end{aligned}
$$

```
Standard normal distribution = تَوْزيعٌ نظامِيٌّ مِعْياريّ 
    standard position = و'ضْعٌ مِعْيارِيّ 
    standard score = عُلامةٌ مِعْياريَّة)
    standardize (v) = يُعاير
```



```
        standardized units = وَحَداتٌ مُعايرة\mp@code{ر}
            star algebra = جَبرٌ نَجْمِيٌ 
            star curve = مُنْحَنٍ نَجْمِيّ
```



```
        star-like region = مَنْطِقةٌ شَبيهةٌ بِالنَّجْم
        star-shaped set = مَجْموعةٌ نَجْمِيَّةُ، الشَّكْل، بُ
            static error = خَطْاًٌ سُكونيّ
        stationary (adj) = مُسْتْقِرّN
        stationary curve = مُنْحَنٍ مُسْتَقِّ"
```



```
        Stationary point = نُقْطةٌ مُسْتِرَّة)
        \mathrm{ stationary state = حَلةٌ مُستْتِرَّة}
stationary stochastic process= = إجْرَائيّة")
```



```
    \mathrm{ قيمةٌ مُستْتِرَّة)}
        statistic = إحْصاء، إحْصَائيّة، 
        statistical analysis = تَحْليل إحْصائِيّ 
        ~ratistical computing = حِسابٌ إحْصائيّ"
        statistical distribution = تَوْزیع إحْصائِيّ
```



```
    statistical independence = استِقْل\
    statistical inference = استِدْلالٌ إحصائِيّ 
        statistical tables = جَداولُ
```

$$
\begin{aligned}
& \text { statistical weight = وَزْنٌ إِحْصائِيّ } \\
& \text { statistics = عِلْمُ الإحْصاء } \\
& \text { طُرَيقةُ الانْحِدارِ الأعْظَمِي (الأكْبَر) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Steiner point }=\text { نُقْطةُ شْناينَر الرّر } \\
& \text { Steinitz exchange theorem =مبرْهْنةُ التَّبادُل لِشْناينتز } \\
& \text { مُبرْهَنةُ شْتُاينتْز } \\
& \text { stem-and-leaf diagram = مُخَطَّطُ السَّاق والْوْرَقِة } \\
& \text { step function = دالَّةٌ دَرَجيَّة والَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { step-up operator = مُؤَتِّرٌ مَزيدٌ تَدْرْ يجيَّا } \\
& \text { steradian = راذْيان مُجَسَّم (سْنيرادْيان) } \\
& \text { stereographic projection = إسقاطٌّ مِجْسادِيّ (إسقاطٌ مِجْسامِيّ) } \\
& \text { مُبرْهنَةُ سنْيوارْت } \\
& \text { Stieltjes integral = تَكامُلُ سْنيلْتْجِس } \\
& \text { Stieltjes transform = مُحَوِّلُ سْنيلْتجسس } \\
& \text { Stirling numbers = أعدادُ سْنيرلْنغ } \\
& \text { Stirling's approximation =تَريبُ سْنيرْلْنْغ } \\
& \text { Stirling's formula = صيغةُ سْنيرلنغ } \\
& \text { Stirling's series = مُتَسَلْسلةُ سْنيرْرْنْغ } \\
& \text { stirrup curve }=\text { مُنْحَني الرِّكاب } \\
& \text { stochastic calculus =حُسْبانٌ عَشْوْ ائبيّ } \\
& \text { stochastic differential =تَاضُلٌ عَشْو ائِيّ عِّي } \\
& \text { stochastic independence = استقِلْالٌ عَشورائيّ } \\
& \text { stochastic integral }=\text { تَكامُلٌ عَشْوُ ائِيّ } \\
& \text { Stochastic matrix }=\text { مَصْفو فٌّ عَشْوْ إِئَّة } \\
& \text { إجْرِ ائيَّةٌ عَشْوْ إِئَّة (عَمَلِيَّةٌ عَشْوْ ائِيَّة) } \\
& \text { stochastic variable }=\text { مُتَفَيِّرٌ عَشْوْ ائِي"ّ } \\
& \text { مُبْرَهنةُ التَّكامُل لِسْنو كَس } \\
& \text { Stokes phenomenon = ظاهِرةُ سْتو كس }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Stokes's differential equation = مُعادَلةُ سْتو كْس التَّفاضُلِيَّة } \\
& \text { Stone-Čech compactification =رُ سْتون- تْشيك }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Stone's theorem =مُبرْهَنُةُ سْنون } \\
& \text { Stone-Weierstrass theorem =مُبرْهَنُةُ سْنون-فايرْنُتْراس } \\
& \text { stopping rule = قاعِدةُ الإيقاف } \\
& \text { straight angle = اوريةٌ مُسْتَقيمة الاوِة } \\
& \text { stratified sample = عِيِّةٌ طَقِقَّة } \\
& \text { stratum =مُجْتَعَعٌ إحْصائيٌّ جُزئيّي" } \\
& \text { stretching transformation }=\text { تَحْوِلُ مَطِّ } \\
& \text { strict relation = عَلاقةٌ فِعْلِيَّة } \\
& \text { strictly concave function = دالَّهُ مُعَعَرةُ فِعْلِيًّا } \\
& \text { strictly convex function = دالَّةٌ مُحَدَّبُّةٌ فِعْلِيًّا } \\
& \text { strictly convex space = فَضاءٌ مُحَحَّبُّ فِفْعِليَّا }
\end{aligned}
$$

$$
\begin{aligned}
& \text { أَدَقُ تُمامًا } \\
& \text { strictly Hurwitz polynomial = حُدودِيَّةُ هورْفْتِزْ الفِعْلِيَّة } \\
& \text { strictly increasing function = دالْةٌ مُتَز ايدةٌ فِعْلِيَّا } \\
& \text { دالَّةٌ رَتِبةٌ فِفْلِيَّا } \\
& \text { strictly stronger = أَقْى تَمامًا } \\
& \text { strong completeness = تَمامِيَّةٌ قَوِّةَ } \\
& \text { strong convergence }=\text { تَقارُبٌ قَوِيّ } \\
& \text { مُبْرْهَنُةُ التَّقَارُب القَوِيّ } \\
& \text { strong ergodic theorem = الُمبرْهنَةُ الطَّاقِيَّةُ القَوِيَّة } \\
& \text { strong law of large numbers =قنون الأعْدادِ الكَبيرةِ القَوِيَّ } \\
& \text { strong operator topology = طبولو جيا المُؤَّرْ اتِ القَوِّيَّة } \\
& \text { strong topology }=\text { طبولوجيا قَوِيَّة } \\
& \text { strongly concave function = دالَّهُ مُعَعَرَّ فِّعِلِيًّا } \\
& \text { strongly connected digraph = بَيانٌ مُوَجَّهٌ قَوِيُّ التُّرابُط } \\
& \text { strongly continuous semigroup = نصْفُ زُمْرةٍ قَوِيَّة الاسْنِمْرُ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { strongly convex function = دالَّةٌ مُحَدَّبَّةٌ فِعْلِّيًّا } \\
& \text { strophoid = سْنروفوئيد } \\
& \text { Student's distribution =تْزَيعُ سْنيو دَنْت } \\
& \text { Sturm separation theorem =مبرْهَنةُ شْنورْمْ في الفَصْلُ } \\
& \text { Sturm sequence = مُتَتالِيةُ شتورم } \\
& \text { Sturm-Liouville equation =مُعادَلُّ شْتورم- لِيو ڤيل } \\
& \text { Sturm-Liouville problem = مَسْألةُ شْتورم- لِيو ڤِيل } \\
& \text { Sturm-Liouville system = مَنظومةُ شْتورْمَ-لِيوڤِيل } \\
& \text { Sturm's theorem }=\text { مُبْهَنةُ شْتورمْ } \\
& \text { subadditive function = دالَّةٌ جَمْمِيَّةٌ جُزْئِيَّا } \\
& \text { subadditive set function = دالَّةٌ مَجْمو عاتِيَّةٌ جَمْعِيَّةٌ جُزْئِيَّا } \\
& \text { subalgebra }=\text { جَبْرِ جُزْئيّيّ } \\
& \text { قاعِدةٌ جُزْئِيَّةٌ لِطبولو جيا } \\
& \text { subcollection }=\text { جَماعةٌ جُزْئِّةَة } \\
& \text { subcontrary (adj) =مُتناقِضْ جُزْئِيَّا } \\
& \text { subdesign }=\text { تَصْميمٌ جُزْئيّيّيّ } \\
& \text { subdiagonal }=\text { خَطُّ تَحْتَ قُطْريّ } \\
& \text { subdiagonal matrix = مَصْفو فٌّة تَحْتَ قُطْرِيَّة } \\
& \text { بَبيانُ تَقْسيمٍ جُزْئِيّ } \\
& \text { عامِلِيٌّ جُزْيُيّ } \\
& \text { subfamily = جَماعةٌ جُزِئِيَّة } \\
& \text { subfield =حَقْلِ جُزْئيّيْ } \\
& \text { subgraph }=\text { بَيانٌ جُزْئِيّ } \\
& \text { subgroup }=\text { زُمْرةٌ جُزْئِيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { sublinear convergence = تَقارُبٌ تَحْتَ خَطِّيّ } \\
& \text { submatrix = مُصْفو فٌّ جُزْئيَّة } \\
& \text { submodule = مودولٌ جُزيْيّيّيّي } \\
& \text { subnormal = تَحْتَ النَّاظِم } \\
& \text { Subnormal operator = مُؤَثِّه تَحْتَ عادِيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { subpopulation = مُجْتَمَعٌ إحْصائِيٌّ جُزْئيّي" } \\
& \text { مَدِّى جُزْبْيّيّ } \\
& \text { مَنْطِقةٌ جُزْئِيَّة } \\
& \text { subring =حَلَقِّةٌ جُزْئَيَّة } \\
& \text { subsampling = اعِيانٌ جُزْئِيّ } \\
& \text { subscript }=\text { دَليلِ سُفْلِيّ حِّيّ } \\
& \text { مُتَفِيرِّ ذو دَليلٍ سُفْلْيّ } \\
& \text { subsequence = مُتَتالِيةّ جُزْرِئَّة } \\
& \text { مَجْمْوعةٌ جُزْئَّةَ } \\
& \text { subspace }=\text { فَضاءٌ جُزْئيّ } \\
& \text { substitute (} v \text {) يُعَوِّض } \\
& \text { substitution = تَعْوِيض } \\
& \text { substitution group }=\text { زُمْرةُ تَعْو يضات } \\
& \text { قاعِدةٌ تَعْو يض } \\
& \text { subtangent = تَحْتَ مُماسّ } \\
& \text { subtraction }=\text { طرْح } \\
& \text { subtraction formula = دُسْنورُ الطَّرْح (دُسْتورُ الفَقْق) } \\
& \text { subtraction sign = إشارةُ الطَّرْح } \\
& \text { subtrahend }=\text { المَطْروح } \\
& \text { subtree = شَجَرَةٌ جُزْئَيَّة } \\
& \text { Successive (adj) = مُتتال (مُتَعاقِب) } \\
& \text { تَقْريباتٌ مُتنتالِية (تَقْريباتٌ مُتُعاقِبة) } \\
& \text { successor = خَلَفُّ، تال، لاحِق } \\
& \text { sufficiency }=\text { كِفاية } \\
& \text { شرُطْ كافٍ sufficient condition } \\
& \text { sufficient statistic }=\text { إحْصَاءٌ كَافٍ } \\
& \text { sum }=\text { مَجْمووع } \\
& \text { sum of squares =مَجْمو عُ المُرَبَّات } \\
& \text { summability methods }=\text { رَ ائقُُ الجُموريَّةُة } \\
& \text { summable }(a d j)=\text { جَموع ع (قابِلْ لْلْجَمْع) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { summable divergent series = مُتَسَلْسلةٌ مُتَبَاعِدةٌ جَمُوعة } \\
& \text { summable family }=\text { جَماعةٌ جَموعة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { summand = كَميّيَّةٌ مُضافةُ } \\
& \text { summation }=\text { جَمْع } \\
& \text { summation convention =مُصطلَحُ الجَمْع } \\
& \text { summation of an infinite series = جَمْعُ مُتَسَسْلِةٍ لانِهائِيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { summation sign }=\text { إشارةُ الجَمْع } \\
& \text { superadditive function = دالّْةُ فَوْقَ جَمْعِيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { superdiagonal matrix = مُصْفو فقٌ فَوْقَ قُطْرِيَّة } \\
& \text { superharmonic function }=\text { دالَّةٌ فَوْقَ تَو وافُقِيَّةٍ } \\
& \text { superior limit = النّهايةُ العُلْيا } \\
& \text { rَقْارُبِّ فَوْقَ خَطِّيّ } \\
& \text { superperfect number = عَدَدٌ فَوْقَ تامٌ } \\
& \text { superpose (v) =يُراكِب (يُطابق) } \\
& \text { superposition }=\text { تَراكُبِ } \\
& \text { superposition principle }=\text { مَبْدُأُ التَّراكُب } \\
& \text { فَضاءُ بانانِيٌّ فَوْقَ انْعِكَاسِيّ } \\
& \text { superset = مَجْموعةٌ فَوْبِيَّة } \\
& \text { superspace = فَضاءٌ فَوْقِيّ } \\
& \text { supplement }=\text { مُكَمِّل } \\
& \text { ووتَرانِ مُتُكامِلان } \\
& \text { supplementary angle }=\text { زاويةٌ مُحَمِّة } \\
& \text { supplementary arc }=\text { قَوْسٌ مُكَمِّل } \\
& \text { support }=\text { حامِل } \\
& \text { support function = الُّةُ حامِل حادِل } \\
& \text { supremum = الحَدُّ الأعْلى (أصْغُرُ راجِح) } \\
& \text { surd = عِبارةٌ صَمَّاء }
\end{aligned}
$$

$$
\begin{aligned}
& \text { surface }=\text { سَطْح } \\
& \text { surface harmonics =تو افُقِيَّاتُ سَطْح } \\
& \text { surface integral = تَكامُلُ سَطْحِيّ } \\
& \text { surface of center = سَطْحُ مَركزَ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { surface of Liouville = سَطْحُ لِيوڤيل } \\
& \text { surface of Monge =سُطْحُ مونْج } \\
& \text { surface of negative curvature = سَطْحٌ ذو تَقَوُّسِ سالِبِ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { surface of revolution = سُطْحٌ دَورَانِيّ } \\
& \text { surface of translation = سَطْحُ انْسِحابِيّ دريّ } \\
& \text { surface of Voss =سَطْحُ ڤوس } \\
& \text { surface patch = رُقْةُ سَطْح } \\
& \text { surjective homomorphism = تَشاكُلٌ غامِر } \\
& \text { surjective mapping = تَطْبيق" غامِر } \\
& \text { مُنْحَني الصَّليب المَعْقوف } \\
& \text { switching function = دالَّةُ بُبدال } \\
& \text { مُبرَهْنَةُ شيلوف دون } \\
& \text { Sylvester's theorems =مُبَهْنَتَا سيلْفِسْتر } \\
& \text { symbol }=\text { رَمْز } \\
& \text { symbolic logic = مَنْطِقٌ رَمْزيّ مُّ } \\
& \text { سِلْسِلةٌ مُتَناظِرة } \\
& \text { symmetric determinant = مُحَدِّدةٌ مُتْناظِرة مُرْرة } \\
& \text { symmetric difference = فَرْقَّ تَناظُرِيّ } \\
& \text { symmetric distribution =تَوْزيعٌ تَناظُرِيّ } \\
& \text { صymmetric form = صيغةٌ مُتْناظِرة } \\
& \text { دالّْةٌ مُتناظِرة } \\
& \text { symmetric geometric configuration = تَشْكيلةٌ هَنْدَسِيَّةٌ مُتْنَاظِرة مُمرة } \\
& \text { symmetric group = زُمْرة مُتَناظِرة مُرِّ } \\
& \text { symmetric matrix = مُصْفوفةٌ مُتناظِرة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مُؤَتِّرْ مُتْناظِر } \\
& \text { symmetric relation = عَلاقةُ مُتناظِرة مُشِّرة } \\
& \text { symmetric space = فَضاءٌ مُتنَاظِر } \\
& \text { مُثُلَّثاتٌ كُرَوِيَّةٌ مُتناظِرة } \\
& \text { symmetric tensor = مُوتِّرٌ مُتَناظِر }
\end{aligned}
$$

$$
\begin{aligned}
& \text { symmetrical distribution =تَزْيعٌ تَناظُرِيّ } \\
& \text { symmetry = تَناظُر } \\
& \text { symmetry function = دالْةُ تُناظُرٍ } \\
& \text { زُمْرُةُ تَناظُرات" } \\
& \text { symmetry plane = مُسْتوي تَناظرُ } \\
& \text { symmetry principle = مَبْدَأُ التَّناظُر } \\
& \text { تَحْوِيلُ تَناظرٍ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { synthetic division = تَقْسيمٌ تَرْكَيبيّ } \\
& \text { system of distinct representatives = مَنْظرمةُ مُمْتِّاتٍ مُتَمَايزة } \\
& \text { system of equations = مَنْورمةُ مُعادَلاتَ } \\
& \text { مَنْظومةُ مُتراجِحات } \\
& \text { مَنْظومةُ مَراحِل } \\
& \text { systematic error = خَطْاٌ نظامِيّ } \\
& \text { systematic sample = عَيِّةُ نظُامِيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Tauberian theorem }=\text { مُبرَهْتُةُ توبر } \\
& \text { Taylor polynomial =حُدودِيَّةُ تايْلور } \\
& \text { Taylor series = مُتَسَلْسلةُ تايْلور }
\end{aligned}
$$

$$
\begin{aligned}
& \text { telegrapher's equation = الُمعادَلُّةُ البرْقِيَّةَ } \\
& \text { telescopic series = مُتَسَلْسِلةٌ مُتُدانِلِّة } \\
& \text { rمُتسَلْسِلةٌ مُتَدانِِلة } \\
& \text { tend to (v) =يَسْىَى إلى } \\
& \text { ten's complement = مُتمِّمٌ عَشْرِيّ } \\
& \text { tensor = مُوتِّر } \\
& \text { tensor analysis = التَحْليلُ المُوتِّرِيّ } \\
& \text { tensor calculus = الحُسْبُانُ المُوتِّرِيّ } \\
& \text { tensor contraction = تَقْليصٌ مُوتِّريّ } \\
& \text { tensor differentiation = مُفاضَلُّ مُوتِّرِ } \\
& \text { tensor field = حَقْلٌ مُوتِّرِيّ مُونِ } \\
& \text { tensor product = جُداءٌ مُوتِّريّ } \\
& \text { tensor quantity = كَمِيّةٌ مُوَوِّرِّةِّةٍ } \\
& \text { tensor space = فَضاءٌ مُوتِّرِيّ } \\
& \text { tensorial set = مَجْموعةٌ مُوتِّرَيَّة } \\
& \text { term }=\text { حَدّ } \\
& \text { terminal line =خَطٌ نِائِيّ } \\
& \text { terminal side = ضِلْعٌ نهائِيّ } \\
& \text { terminal vertex = ذروْةٌ نهائِيَّة (رَّأْ نهُ نهائيّ) } \\
& \text { كَسْرٌ تسَلْسُلِيٌٌ مُنْتُهٍ } \\
& \text { عَشْرْ } \\
& \text { ternary expansion }=\text { نَشْرُ ثُلاثيِّيٌ } \\
& \text { ternary notation = تَدْوينٌ ثُلاثبيّي نيّ } \\
& \text { ternary number system = نظامُ العَدِّ الثُّلاثِثيّيّ } \\
& \text { ternary operation = عَمَلِيُّةُ ثُلاِثيَّةُ } \\
& \text { ternary quantic =حُدوِيَّةٌ مُتَجانسةٌ ثُلاثِيَّةُ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { tessellation } \\
& \text { tesseral harmonic =تو افُقِيَّةٌ فُسَيْفُسائِيَّة } \\
& \text { test function = دالَّةُ اخْتِبار } \\
& \text { test of hypothesis = اختِبارُ الفَرْضِيَّات } \\
& \text { test rule = قاعِدةٌ اخْتِباريَّة } \\
& \text { test statistic }=\text { إحْصَاءٌ اخْتِبَارِيّ } \\
& \text { tetrad }=\text { رُباعِيَّة } \\
& \text { tetradic }=\text { رابوعِيّ } \\
& \text { tetragon }=\text { رُباعِيُّ أضْلا } \\
& \text { tetrahedral angle }=\text { زاوِيةٌ رُباعِيِّ وُجوه } \\
& \text { tetrahedral graph =بَيانُ رُباعِيِّ وُجوه } \\
& \text { tetrahedral group = زمْرةُ رُباعِيَّاتِ الوُجوه } \\
& \text { tetrahedral surface }=\text { سَطْحُ رُباعِيِّ وُجوه } \\
& \text { tetrahedron = رُباعِيُّ وُجوه (مُتَحَدِّدُ وُجوهٍ رُباعِي) } \\
& \text { tetromino }=\text { دومينو رُباعِيّ } \\
& \text { Thabit ibn Kurrah number = عَدَدُ ثابتِ بْن قُرَّة } \\
& \text { Thabit ibn Kurrah rule = قاعِدةُ ثابتِ بْن قُرَّة } \\
& \text { مُبَرْهَنةُ تالِس } \\
& \text { theorem }=\text { مُبرهْهَنة } \\
& \text { theoretical frequency =َكْرارٌ نَظَريّ } \\
& \text { theory = نَظَرِّةَ } \\
& \text { theory of equations }=\text { نَظَرَّةُ المُعادَلات } \\
& \text { theory of games }=\text { نَظَرَّةُ الُمبارَيات (الألْعاب) نُطرهُ } \\
& \text { نَظَرَيَّةُ الزُّمرَ } \\
& \text { theory of numbers = نَظَرَّةُ الأعْدُداد } \\
& \text { theta functions = دُوالَّ ثِيتنا } \\
& \text { third curvature }=\text { التَّقَوُّسُ الثَّالِثت } \\
& \text { third derivative }=\text { الُُمْتَقُقُ الثَّالِث الْأثل } \\
& \text { third quadrant }=\text { الرُّبُعُ الثَّالِث } \\
& \text { مُبرْهَنةُ الدَّو ائِر الثَّلاث }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مَسْألةُ القَراراتِ الثُّلاثة } \\
& \text { three-dimensional geometry = المَنْدَسُة الثُّلاِثِّيَّةُ الأُبْعاد }
\end{aligned}
$$

$$
\begin{aligned}
& \text { رُموزُ الأدِلَّةِ الثُّلاثة } \\
& \text { three-space = فَضاءٌ ثُلاثِيّ } \\
& \text { three-squares theorem =مُرْهَنُةُ المُرَبَعاتِ الثُّلاثة } \\
& \text { مُبْرْهنةُ ثو - سيغِل- رُوث }
\end{aligned}
$$

$$
\begin{aligned}
& \text { times sign }=\text { إشارةُ الضَّرَّب } \\
& \text { Titanic prime = عَلَدُ تائْتانك الأوَّكِّيّ } \\
& \text { Titchmarsh's theorem }=\text { مُبرْهَنَةُ تِتْشمارْنُ } \\
& \text { Toeplitz matrix = مَصْفوفةُ تويْلينز } \\
& \text { Tonelli's theorem = مُبرْهَنَةُ تونيلِّي } \\
& \text { topological dimension =بُعْدٌ طبولوجيّ } \\
& \text { topological dynamics }=\text { الدِّيناميكُ الطبولوجيّ } \\
& \text { topological field }=\text { حَقْلٌ طبولوجيّ } \\
& \text { topological group =زُمْرة طبولوجيَّة } \\
& \text { topological linear space = فَضاءٌ خَطِّيٌّ طبولوجيّ طوِّ } \\
& \text { topological manifold = مُتَنَوِّعةٌ طبولو طجيَّة } \\
& \text { topological mapping =تُبْبيقّ طبولوجيّ طبيّ } \\
& \text { topological notion }=\text { مَفْهومٌ طبولوجيّ طِيّ } \\
& \text { topological product of two spaces }=\text { جُداءٌ طبولوجيٌّ لفَضاءَيْن طِيُّ } \\
& \text { topological ring }=\text { حَلَقةٌ طبولو جيَّة } \\
& \text { topological simplex }=\text { مُبَسَّطُ طبولو طجيّ طولِ } \\
& \text { مُحَمَّعُ مُبَسَّطَاتٍ طبولوُطيّ } \\
& \text { topological space }=\text { فَضاءٌ طبولوجيّ } \\
& \text { topological vector space }=\text { فَضاءٌ مُتَّجهِيٌّ طبولوجيّ طِيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { topologically complete space = فَضاءٌ تامٌّ طبولو جيَّا طوِّا } \\
& \text { topology }=\text { طبولوجيا }
\end{aligned}
$$

$$
\begin{aligned}
& \text { toric surface = سَطْحٌ طاريّ } \\
& \text { toroid }=\text { طارةُ مُنْحَن مُغْلَقِ } \\
& \text { toroidal surface }=\text { سُطْحٌ طارِيّ } \\
& \text { Torricelli point }=\text { نُقْطُةُ توريشلي } \\
& \text { torsion = الْتِفاف } \\
& \text { torsion coefficients = مُعامِلاتُ الْنِفاف } \\
& \text { عُنْصُرُ الْتِفاف } \\
& \text { torsion group = زُمْةُ الْتِفاف التِ } \\
& \text { torsion module = مودولُ الْتِفاف اليِهاف } \\
& \text { torsion submodule }=\text { مودولُ الْتِفافٍ جُزْئِيٌّ } \\
& \text { torsion-free group }=\text { زُمْرةٌ بِلا الْنِفَافِ } \\
& \text { torsion-free module }=\text { مو دولٌ بِلا الْتِفاف } \\
& \text { torus }=\text { طارة } \\
& \text { total curvature }=\text { تَقَوُّسٌ كُلِّي" } \\
& \text { total derivative }=\text { مُشْتْقُّ كُلِّي" } \\
& \text { total differential }=\text { تَفاضُلٌ كُلِّي" }
\end{aligned}
$$

$$
\begin{aligned}
& \text { total ordering }=\text { تَتْتيبٌ كُلِّيّ } \\
& \text { مُبرْهَنَةُ الاحْحِمالاتِ الكُليّيّة } \\
& \text { total space = فَضاء }
\end{aligned}
$$

$$
\begin{aligned}
& \text { total variation }=\text { تَفَيُّرٌ كُلِّيّ } \\
& \text { totally bounded set = مَجْموعةٌ مَحْدو دةٌ كُمِيَّا } \\
& \text { totally disconnected (adj) =غَيْ مُنَرابطٍ كُمِيَّا } \\
& \text { totally finite measure = قِياسٌ مُنْتَهٍ كُلئّيَّ } \\
& \text { totally imaginary field }=\text { حَقْلٌ تَخَيُّلِيٌّ كُليِّيَّا } \\
& \text { totally sigma-finite measure }=\text { قِياسٌ سيغْما-مُنْتَهٍ كُلِّيَّا } \\
& \text { tour }=\text { جَوْلة } \\
& \text { tournament }=\text { بَيانٌ وَحيدُ الاتِّجاه } \\
& \text { towers of Hanoi }=\text { أبر اجُ هانوي }
\end{aligned}
$$

```
        trace of a matrix = أثرُ مَصْفوفة
            tractrix = مُنْحَن مُتساوي المُماسَّات
            ص\mp@code{vorرٌ ذَيْلي"}
        \mathrm{ درَجةًّ تَسامٍ}
    transcendence dimension =بُعْدُ
```



```
        transcendental element = عُنْصُر" مُتسام
transcendental field extension = مُمَدَّدٌ مُتسام
    transcendental function = دالَّهٌ مُتَسامِية)
    transcendental number = عَدَدٌ مُتسامٍ
        transcendental term = حَدٌ مُتَسامٍ
        transfinite induction = استِقراء موغِل
            transfinite number = عَدَدٌ موغِل
        jransformation group = زُمْرةُ تَحْو\لات
```



```
transformation of coordinates= تَحْويلُ الإحْدإِثِّات
    transition probability = احتِمالٌ انتِقالِيّ 
```



```
            transitive graph = بَيانٌ مُتعهدٍ!
            jransitive group = زمُةٌ 
```



```
        translate (v) = يَسْحَب
        translation = انْسححاب
        translation of axes = انْسـحابٌ المُحاور
        translation surface = سُطْحٌ انْسحابِيّ
    transportation problems=0
        transpose (v)= يَنْقُ
        transpose of a matrix = مَنْقولُ مَصْفوفة 
        nمُناقَلة
        transversal = قاطِعٌ مُستْعْرِض
```

$$
\begin{aligned}
& \text { transverse axis = مِحْورَ مُسْتَعْرِ (مِحْورَر قاطِع) } \\
& \text { trapezium = شِبْهُ مُنْحَرَ } \\
& \text { trapezoid = ثِبْهُ مُنْحَرِفرِ } \\
& \text { trapezoidal integration = مُكامَلةٌ بأنْنُبهِ الُمْنُحَرَات }
\end{aligned}
$$

$$
\begin{aligned}
& \text { traversable (adj) = عَبور (قابِلُ للعُبور) المُحْر } \\
& \text { traverse = قاطِعٌ مُسْتْعْرِض } \\
& \text { tree }=\text { شَجَرَة } \\
& \text { tree diagram = مُخَطَّطٌ شَجَرِيّ } \\
& \text { trefoil = ثُلاثِيُّيُ الورُيْقات }
\end{aligned}
$$

$$
\begin{aligned}
& \text { trend }=\text { نَزْعة } \\
& \text { trend line =خَطُ النَّزعة } \\
& \text { triabolo = ثُلاثيُيُ مُثَلَّثاتٍ قائِمة } \\
& \text { trial }=\text { مُحاوَلكة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { triangle }=\text { مُثَلَّث } \\
& \text { triangle arcs = قَوْسا مُثْلَّث } \\
& \text { triangle function = دالَّةُ ُمُلَّث } \\
& \text { triangle graph =بَيانُ مُثَلْث } \\
& \text { triangle inequality =مُتر اجحةُ المُثنُثنَ } \\
& \text { triangle of reference = مُنَلَّثٌ مَرْجِيِّ (مُثُلَّثُ إسْناد) } \\
& \text { triangle of vectors = مُثَلّْثُ مُتَّجهات } \\
& \text { triangle postulate }=\text { مُسَلَّمةُ المُثَلَّثِ } \\
& \text { triangulable (adj) = ثَلوث (قابِلٌ للتُّتْليث) } \\
& \text { triangulable space = فَضاءٌ ثَلوث (فَضاءٌ قابِلٌ للتَّثْليث) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { triangular number = عَدَدٌ مُثْلَّنِيّ } \\
& \text { triangular prism = مَوْشورٌ مُثُلَّبِّيّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { triangular pyramid =هَرَمٌ مُثْلَّثِيّ } \\
& \text { triangulate (v) =ُيُلِّث } \\
& \text { triangulation }=\text { تَثْليث } \\
& \text { triangulation problem }=\text { مَسْألةُ التَّنْليث } \\
& \text { trichotomy property = خاصيِّةُ التَّفَرُّعُ الثُّلاثِيّ } \\
& \text { trident of Newton =ثُلاثِيُّ شُعَبِ نيوتن } \\
& \text { tridiagonal matrix }=\text { مَصْفو فٌةٌ ثُلاثِثَّةُ الأُقطار }
\end{aligned}
$$

$$
\begin{aligned}
& \text { trigon }=\text { مُثْلَّث } \\
& \text { صِيَغْ الجَمْعِع المُثْلَّثَاتِيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مُنْحَحَياتٌ مُثْلَّناتِيَّة } \\
& \text { مُعْادَلةٌ مُثَلَّثَاتِيَّة } \\
& \text { trigonometric functions = دَوالُّ مُثْلَّناتِيَّة } \\
& \text { trigonometric identities = مُتَطابقاتٌ مُثَلَّثاتِيَّة } \\
& \text { trigonometric polynomial =حُدورِيَّةٌ مُثَلَّثاتِّيَّة } \\
& \text { trigonometric series = مُتَسَلْسلةٌ مُثَلَّثاتِيَّة } \\
& \text { trigonometric substitutions = تَعْو يضاتٌ مُثْلَّثاتِيَّة } \\
& \text { عِلْمُ الُمْثَنَّثات } \\
& \text { trihedral }(a d j, n)=\text { ثُلاثِيُّ وُجوه }^{\prime} \\
& \text { trihedral angle }=\text { زاويةٌ ثُلاثِيَّةُ الوُجوه } \\
& \text { trihedron }=\text { ثُلاثِيُّ وُجوه وره } \\
& \text { trihedron = مُتَعَدِّدُ وُجوهٍ ثُولاثِيّ ونِّ } \\
& \text { trilinear coordinates = إحداثِيَّاتٌ ثُلاثِيَّةُ الحَطِيّّة } \\
& \text { trillion }=\text { تريليون } \\
& \text { trilogarithm }=\text { لُغارِتْمٌ ثُلاثِيّيّ } \\
& \operatorname{trim}(v)=\text { يُشَذِّب } \\
& \text { trinomial = ثُلاثِيَّةُ حُدود (حُدو دِيَّةٌ ثُلاثِيَّة) } \\
& \text { trinomial distribution =تَزْيُعٌ ثُلاثِيُّ الحُدود } \\
& \text { trinomial surd }=\text { جَذْرٌ أصَمُّ ثُلاثِيُّ الحُدو }
\end{aligned}
$$

$$
\begin{aligned}
& \text { triomino }=\text { دومينو ثُلاثِيّ } \\
& \text { triple integral = تَكامُلْ ثُلاثِيّ } \\
& \text { triple point }=\text { نُقْطٌ ثُثُثِثِّةِ } \\
& \text { triple product }=\text { جُداءٌ ثُلاثِيّ } \\
& \text { triple root of an equation =جَذْرٌ ثُلابِيُّ لِمُعادَلة } \\
& \text { triple scalar product }=\text { جُداءٌ عَدَدِيٌٌ ثُلاثِيّ } \\
& \text { triple vector product }=\text { جُداءٌ مُتَّجهِيٌّ ثُلاثِيّ } \\
& \text { triple-diagonal matrix = مَصْفوفةٌ ثُلاثِيَّةُ الأَقْطار } \\
& \text { trirectangular spherical triangle = مُلْثُثٌ كُرُويٌّ قائِمُ الزَّوايا } \\
& \operatorname{trisect}(v)={ }^{\prime \prime} \\
& \text { trisecting the angle = تَثْليثُ الزَّاوِية } \\
& \text { مَسْألُةُ التَتْلْيث } \\
& \text { trisectrix = مُنْحَني التَّْلْيث } \\
& \text { trisectrix of Catalan = تَثْليثيَّيُّ كاتالان }
\end{aligned}
$$

$$
\begin{aligned}
& \text { رrit }=\text { رَقْمٌ ثُلاثِثيّ } \\
& \text { trivial graph = بَيانٌ تافِفَّ } \\
& \text { trivial group }=\text { زُمْرةٌ تافِهِهة } \\
& \text { trivial ring }=\text { حَلَقةٌ تافِهِة } \\
& \text { trivial solution }=\text { حَلٌّ تافِه }
\end{aligned}
$$

$$
\begin{aligned}
& \text { trivial topology = الطبولو جيا التَّافِهِة } \\
& \text { مُتُّجةٌ تافِهُ } \\
& \text { trochoid = دُحْوجٌ عامّ } \\
& \text { tromino }=\text { دومينو ثُلاثِيّ } \\
& \text { true complement }=\text { مُتُمِّمٌ صَحيح } \\
& \text { truncated cone }=\text { مَخْروطٌ مُقْطوع } \\
& \text { truncated distribution }=\text { تَوْزيعٌ مَقْطورع عُرْ } \\
& \text { truncated icosahedron =عشْرونيُّ وُجوهٍ مَقْطوع ع } \\
& \text { truncated prism }=\text { مَوْشورٌ مَقْطور }
\end{aligned}
$$

$$
\begin{aligned}
& \text { truncated pyramid }=\text { هَرَمٌ مَقْطوع }
\end{aligned}
$$

$$
\begin{aligned}
& \text { truncation }=\text { قَطْع } \\
& \text { truth table }=\text { جَدْوْلُ الحَقيقة } \\
& \text { truth value }=\text { قيمُّ الحَقيقة } \\
& \text { Tschirnhausen's cubic =مُكعَّبُ تُشير نْهاوزن } \\
& \text { Turing machine }=\text { آلةُ تورينغ } \\
& \text { turning point }=\text { نُقْطُُ تَحَوُلُ } \\
& \text { turning value }=\text { قيمةُ تَحَوُّل } \\
& \text { مَسْأَلةُ الألْوانِ الاثْثْيْ عَشَرُ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { twisted curve = مُنْحَن مَنْول } \\
& \text { two-decision problem = مَسْألةٌ ثُنائِيَّةُ القَرَار } \\
& \text { two-dimensional (adj) = ثُنائِيُّ البُعْد } \\
& \text { الَنْدَسَةُ الثُنائِئَةُ البُعْد } \\
& \text { two-part experiment = تَجْربةٌ ذاتُ جُزْأئْن } \\
& \text { two-person game = كُعبةٌ يَيْنَ شَخْصَيْنُ } \\
& \text { two-point contact = تُماسٌ ثُنَائِيُّ الُنُقْطة } \\
& \text { two's complement = مُتْمِّمٌ اثْنانِيّ } \\
& \text { two-sided ideal }=\text { مِثالِيٌّ ثُنائِئُ الجانبٌ } \\
& \text { two-sided limit }=\text { نهايةٌ ُُنائِيَّةُ الجانب } \\
& \text { two-sided test }=\text { اختِبارٌ ثُنائِيُ الجانبُّ } \\
& \text { two-stage design = تُصْيمٌ على مَرْحَحَتَيْن } \\
& \text { two-stage experiment =تَجْر بةٌ على مَرْحَحَتَيْن } \\
& \text { two-stage sampling = اعتِيانٌ على مَرْحَحَتَيْن } \\
& \text { two-tail test }=\text { اخخبِارٌ ثُنائِيُّ الذيَّيْلِ } \\
& \text { two-tailed test }=\text { اختِبارٌ ثُنائِيُّ الذيّّيُل } \\
& \text { مَنْطِقٌ ثُنائِيُ القيمة } \\
& \text { two-valued variable = مُتَغِيِّرٌ ثُنائِيُ القيمة } \\
& \text { two-way series = مُتَسَلْسلةٌ ثُنَائِئَّ الاتِّجاه }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Tychonoff conditions =شُروطُ تيخونوف }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Tychonoff topology = طبولوجيا تيخونوف } \\
& \text { مُبَرْهنَةُ تيخونوف ف }
\end{aligned}
$$

```
                                    U
            ultrafactorial = فَوْقَ عامِلِيّ 
        ultrafilter = فَوْقَ مُرَشّحة)
        ultrametric = فُوْقَ دالّةٍ مَسافة)
    ultraspherical polynomials = حُدودي\tilde{x}
```



```
            unary operation = عَمْلِّلِّةٌ أُحادِّيّة)
            unbiased estimate = تَقْدير" غَيْرُ مُنحاز
    unbounded function = دالًّهٌ غَيْرُ مَحْدودة
```



```
    unconditional convergence = تَقارُبٌ غَيْرٌ مَشْرورُ
```



```
            uncountable set = مَجْموعةٌ غَيْرُ عَدودة)
            undecagon = أحَدَ عَشُرِيٌ الأضْا)
            undecahedron = أحَدَ عَشْرِيٌّ الوُجوه
            undecomino = دومينو أحَدَ عَشُرِيّ 
    underdetermined (adj) = ناقِصةُ التّحْدمد
        underlying graph = بيانٌ تَحْنِيّ 
            underlying set = مَجْموعةٌ تَحْمْيَّة)
    undetermined coefficients = مُعامِلاتٌ غَيْرُ مُحَدُّدة)
    undetermined multipliers = مُضاريبٌ غَيٌْ مُححَّدة)
```



```
        undirected graph = بَانٌ غَيْرُ مُوَجّه
        unduloid = سُطْحٌ تَمَوُجّيٌّ
        ungula = مُجَسَّمٌ ظُفْريّ*
    uniform bound = حَدٌٌ مُنتْمَم
```



```
    uniform circular motion = حرَكةٌ دائرِي\tilde{ةٌ}
```



```
        uniform distribution = تَوْيعٌ مُنْتضم
        un\mp@code{نُظمٌ}
        uniform scale = تَدْريجٌ مُنْتْظم
```



```
        uniformly convex space = فَضاءٌ مُحَدَّبٌ بانْتِظام
```



```
        unilateral analysis = تَحْليلٌ أُحادِئٌ ابحانب')
```



```
        unilateral surface = سُطْح" أُحادِيٌُ الجانب'
```



```
        unimodular matrix = مُصْفوفةٌ واحِدِي\tilde{ة}
        unimodulus matrix = مُصْفوفةٌ واحِدِي\tilde{ة}
        union = اجتِماع (اتّحاد)
        union rule of probability = قَاعِدةُ الاتّحَادِ في الاحْتِمَالات
unique factorization domain = مَطْقِةُ
    unique factorization ring = حَقُةُ، التُّحْيل الوَحيدِ
```



```
        unit ball = كُرةُ
```



```
        unit circle = دائرةُ الوَحْدة
unit conversion factor = عامِلُ تَحْوِلٍ
        unit cube = مُعَعْبُ الوَحْدة
        unit disk = قُصصُ الوَحْدة
        qعُنصُرٌ واحِدِيّ"
        unit fraction = كسْرٌ واحِدِيّ 
```

$$
\begin{aligned}
& \text { unit impulse = دَفْعٌ واحِدِيّيّ } \\
& \text { unit normal }=\text { ناظِمّ واحِدِيّ } \\
& \text { unit operator }=\text { مُؤَتِّرْ واحِدِيّ } \\
& \text { unit set = مَجْموعةٌ أُحادِيَّةُ العُنْصُرُ } \\
& \text { unit sphere =كُرةُ الوَحْدة } \\
& \text { unit square = مُرَّبُع الوَحْدَة } \\
& \text { unit tangent }=\text { مُماسٌّ واحِدِيّ } \\
& \text { unit vector = مُتَّجُهُ الوَحْدَة } \\
& \text { unital left module = مودولٌ يَساريُّ واحِدِيّ } \\
& \text { unital module }=\text { مودولٌ واحِدِيّ } \\
& \text { unital right module = مودولٌ يَينيّيٌ واحِدِيّ واحيّ } \\
& \text { unitary group = زُمْرةٌ واحِحِيَّة } \\
& \text { unitary matrix }=\text { مُصْفو فةٌ واحِدِيَّة } \\
& \text { unitary module = مودولٌ واحِدِيّ } \\
& \text { unitary space }=\text { فَضاءٌ واحِدِيّ واحِيّ } \\
& \text { unitary transformation = تَحْويلٌ واحِدِيّ واحيّي" } \\
& \text { univariant distribution = تَزْيحعٌ أُحادِيُّ التَّفَيُرُ } \\
& \text { universal algebra }=\text { جَبْرٌ شامِل } \\
& \text { universal element = عُنصُرٌ شامِل حِمل } \\
& \text { universal set = المَجْموعةُ الكُكِيّة (الشَّامِلة) } \\
& \text { unknown = مَجْهُول } \\
& \text { unordered arrangement of a set }=\text { نَسَقٌ غَيْرُ مُرَّبَبٍ لِمَجْمْوعة } \\
& \text { unsigned integer = عَدَدٌ صَحيحِ غَيْرُ مُؤَنَّرُ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { unsolvable (adj) = غَيْرُ حَلُول (غَيْرُ قابِل لِلِحَلّ) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { unstable graph = بَيانٌ غَيرُ مُسْتَقِرّ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { upper Darboux integral = تَكامُلُ دارْبو الأعْلَى } \\
& \text { upper Darboux sum =مَجْموعُ داربو الأعْلَى }
\end{aligned}
$$

$$
\begin{aligned}
& \text { upper integral = الُّكامُلُ الأعْلَى } \\
& \text { upper limit = النّهايةُ العُلْيا } \\
& \text { upper limit of integration = الحَدُّ الأعْلَى لِلِّكَكامُل } \\
& \text { upper semicontinuous function = دالَّةٌ نصْفُ مُسْتمِرَّة من الأعْلَى } \\
& \text { upper sum = مَجْموعٌ أَعْلَى }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Urysohn space =فَاءُ أوريسون } \\
& \text { Urysohn's lemma =تَوْطِةُ أوريسون } \\
& \text { Oُمَرْهَنُةُ أُوريسون في التَّمْنير }
\end{aligned}
$$

$$
\begin{aligned}
& \text { valence =تواتُرُ خُطوط } \\
& \text { validity }=\text { صِحَّة } \\
& \text { valuation }=\text { تَقْيم } \\
& \text { value }=\text { قيمة } \\
& \text { value group = زُمْرةُ قِيَم } \\
& \text { value index = دَليلُ القيمة (مُؤَشِّرُ القيمة) } \\
& \text { value of a function = قيمُّ دالَّة } \\
& \text { value of a variable }=\text { قيمةُ مُتْفِيرّ } \\
& \text { value of an expression = قيمةُ عِبارة } \\
& \text { Van der Pol equation = مُعادَلةُ ثانْ دِرْ بول } \\
& \text { مُبرْهَنْةُ ڤان در فيرْدن } \\
& \text { Vandermonde determinant =مُحَدِّدةُ قُندرْمْمونْد } \\
& \text { Vandermonde matrix =مُصْفوفُةُ ڤاندِرْمونْد } \\
& \text { Vandermonde's identity = مُتطابقةُ ڤاندِرْمونْد } \\
& \text { Vandermonde's theorem = مُبْهَنَةُ ثاندرْمْونْدُ } \\
& \text { vanish (v) = يَنْعَدِم، يَتَّاشَنَى } \\
& \text { vanish at infinity (} v \text {) = يَنْعَدِمُ في اللانهاية } \\
& \text { variable }=\text { مُتَغَيِّير } \\
& \text { variance }=\text { تَبُيُن } \\
& \text { variance ratio test = اختِبارُ نسْبِة النَّبَايُنات } \\
& \text { variance-covariance matrix = مَصْفو فةُّ النَّايُنَ-النَّغايُرُ } \\
& \text { variate difference method = طَريقةُ الفَرْق المُنْغِيرِ } \\
& \text { variational calculus =حُسْبُنُ التَّغُيُرات } \\
& \text { variational principle = مَبْدُاً التَّعَيُرِيَّة } \\
& \text { مُتُوازي أضْلاع ڤِرينين } \\
& \text { مُمَرْهَنُةُ رِرينين } \\
& \text { vector = مُتَّجهي } \\
& \text { vector analysis = النَّحْليلُ المُنُجهِيّ } \\
& \text { vector basis = قاعِدةُ مُتَّجهات }
\end{aligned}
$$

$$
\begin{aligned}
& \text { vector bundle }=\text { حُزْمةُ مُتَّجهات } \\
& \text { vector equation = مُعادَلّْةٌ مُتَّجهيَّةَّ } \\
& \text { vector field = حَقْلُ مُتَّجهات مُحوت } \\
& \text { vector function = دالَّةٌ مُنَّجِجَّيَّة } \\
& \text { vector product }=\text { جُداءٌ مُتَّجرِيّ } \\
& \text { vector projection =مَسْقَطُ مُتَّجهَ } \\
& \text { مُتَفِيرِ عَشْوْ ائِيٌّ مُتَّجِّيّيّ } \\
& \text { vector space = فَضاءٌ مٌنَّجَجِيّ مِّيّ } \\
& \text { vector sum = مُحَصِّلةُ مُتَّجهات مُّتُ } \\
& \text { vector triple product }=\text { جُداءٌ مُتَّجرِيٌّ ثُكُلاثِيّ } \\
& \text { vectorial angle = زاوِيةٌ مُتَّجهِيَّة } \\
& \text { vector-valued function = دالَّةٌ مُتَّجهِيَّة } \\
& \text { مُخَطَّطُ ڤِثنْ } \\
& \text { versed cosine = مُتْمِّمُ الجَيْبِ إلى الواحِد } \\
& \text { versed sine =مُتمِّمُ جَيْبِ التَّمامِ إِلى الواحِد } \\
& \text { versine =مُتمِّمُ جَيْبِ التَّمامِ إلى الواحِد } \\
& \text { vertex = رَأْس } \\
& \text { vertex angle = زاوِيةُ الرَّأْس } \\
& \text { vertex cover = تَغْطِيٌّ بالُؤُؤوس الُورس } \\
& \text { vertex domination number = عِدَّةُ هَيْمَنةِ الرُّؤوس بُروس } \\
& \text { vertex form = صيغةُ الذَّرْوة } \\
& \text { vertex-covering number = عِدَّةُ التَفْطِيةِ بالرُّؤوس } \\
& \text { vertex-disjoint paths =مَسارا زُؤوس مُنْفَصِلان }
\end{aligned}
$$

$$
\begin{aligned}
& \text { vertical angles }=\text { زاوِيَتانِ مُتُقابِلَتان بالَّأْس } \\
& \text { Viète's formula = صيغةُ قييت } \\
& \text { vinculum = شَرطةٌ مُعَلاَّةُ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Volterra equations }=\text { مُعادَلات ثولْتِرَا } \\
& \text { volume }=\text { حَجْم }
\end{aligned}
$$

> volume by slicing =حسابُ الحَجْمْ بِالتُّشْرِحِ volume integral = تَكامُلٌ حَجْمِيّ
> von Aubel's theorem = مُبرْهَنُة ثون أُوبِل
> vulgar fraction =كسْرٌ عادِيّ

$$
\begin{aligned}
& \text { W } \\
& \text { walk = مَسْلَك } \\
& \text { Wallis formulas = صِيَغُ واليس } \\
& \text { Wallis product }=\text { جُداءُ واليس } \\
& \text { Wallis theorem =مُرْهَنَةُ واليس } \\
& \text { washer method = طَ يقةُ الحَلَقة (طَريقةُ الفَلْكة) مُرا } \\
& \text { مُنْحَني واط } \\
& \text { مُوَيْجْة } \text { wavelet } \\
& \text { weak convergence = تَقرُبٌ ضَعيف } \\
& \text { قانونُ الأعْدادِ الكَبيرةِ الضَّعيف } \\
& \text { weak topology = طبولوجيا ضُعيفة } \\
& \text { weakly complete space = فَضاءٌ تامٌّ بضَيْف } \\
& \text { weakly connected digraph = بَيَنٌّ مُوَجَّهُ ضَعْيفُ التَّرابُط } \\
& \text { Weber differential equation = مُعادَلُةُ فيبر التَّفاضُلِيَّة } \\
& \text { Weber-Hermit equation = مُعادَلُّ فيبر - هِرْمِت } \\
& \text { Weddle's rule }=\text { قاعِدةُ ويدْل } \\
& \text { wedge }=\text { إسفين } \\
& \text { Weierstrass functions = دَوالُ فايرْنُتْراس }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Weierstrassian elliptic function = دالَّةُ فَيْْنُنْراس النَّاقِصِيَّة } \\
& \text { weight }=\text { وَزْن، ثِقْل } \\
& \text { weight function = دالَّةُ تَنْقيل } \\
& \text { weighted average }=\text { مُتوَسِّطُ مُمَقَّلْ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Weingarten formulas = صِيَغ قُاينغارتن } \\
& \text { Weingarten surface = سَطْحُ ڤَينغارتن } \\
& \text { weird number = عَدَدٌ عَجيب } \\
& \text { well-ordered set = مَجْموعةٌ مُرُتَّةٌ جَيِّدَاً } \\
& \text { well-ordering principle = مَبْدَأُ التَّرْتيب الجَيِّد }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Whewell equation = مُعَادَلةُ ويول }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Whitney number =عَدُدُ وتْنِي }
\end{aligned}
$$

$$
\begin{aligned}
& \text { whole number = عَدَدٌ صَحِحِ موجب } \\
& \text { width = عَرْض } \\
& \text { Wiener process = إجر ائِيَّةُ فينر } \\
& \text { Wiener-Hopf equations = مُعادَّكنا فينرَ -هوبْف } \\
& \text { Wiener-Hopf technique =تْنْنَّةُ فينَر - هوبْف } \\
& \text { Wiener-Khintchine theorem =مُرْهَنُُ فينَر - خينْتُشين } \\
& \text { مُبرْهَنَةُ ويلْسون } \\
& \text { winding number = عَدَدُ اللُّفُّات }
\end{aligned}
$$

$$
\begin{aligned}
& \text { X } \\
& \text { xaxis = مِحْورُ السِيّنات (مِحْوَرُ الفَواصِل) } \\
& \text { x component = المُرَكِّةُ السِيِّيَّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Y } \\
& \text { y axis = مِحْورُ العَيْنات (مِحْورُرُ التَّراتيب) } \\
& \text { y component = المُرَكِّةُ العَيْنَّةُ } \\
& \text { y coordinate = الإحداثِيُّ الَيْنِيّيّ } \\
& \text { Yonden square = مُرَّعُعُ يونْدن } \\
& \text { Yoتُبَاينةُ يونْغ } \\
& \text { Z } \\
& \text { zaxis = مِحْورُ الصَّادات (مِحْورُ الرَّوا اقِم) } \\
& \text { zcomponent = الُمركَّبُةُ الصَّادِيَّة } \\
& \text { zcoordinate }=\text { الإحداثِيُ الصَّادِيّة }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Zeno's paradox = مُحِيِّرةُ زينور مِونو } \\
& \text { zero }=\text { صِفْر } \\
& \text { zero divisors = قَواسِمُ للصِّفْر } \\
& \text { zero geodesic }=\text { جيوديزِيٌّ صِفْرِيّ } \\
& \text { zero measure = قِياسٌ صِفْرِيّ } \\
& \text { zero point = نُقْطُُ الصِّفْر (نُقْطٌة صِفْرِيَّة) } \\
& \text { zero ring = حَلَقٌة صِفْرِيَّة } \\
& \text { zero set = مَجْموعةٌ صِفْرَّيَّة } \\
& \text { zero vector = المُتُجُْ الصِّفْرِيَّ } \\
& \text { zero-sum game = مُباراةٌ صِفْرِيَّةُ المَجْموعُعِّ ع } \\
& \text { zeta function }=\text { دالَّةُ زِيتا } \\
& \text { zonal harmonics =تَو افُقِيَّاتٌ نطاقِيَّة } \\
& \text { Zorn's lemma }=\text { تَوْطِئُُ زورْنُ }
\end{aligned}
$$

